chapter 19

groupware

Groupware

• What is groupware
• Types of groupware
 – computer-mediated communication
 – meeting and decisions support systems
 – shared applications and artefacts
• Models of groupware
• Implementation issues

What is groupware?

• Software specifically designed
 – to support group working
 – with cooperative requirements in mind
• NOT just tools for communication
• Groupware can be classified by
 – when and where the participants are working
 – the function it performs for cooperative work
• Specific and difficult problems with groupware implementation
The Time/Space Matrix

Classify groupware by:
when the participants are working, at the same time or not
where the participants are working, at the same place or not

Common names for axes:
time: synchronous/asynchronous
place: co-located/remote

Time/Space Matrix (ctd)

Classification by Function

Cooperative work involves:
Participants who are working
Artefacts upon which they work
What interactions does a tool support?

• computer-mediated communication – direct communication between participants
• meeting and decision support systems – common understanding
• shared applications and artefacts – control and feedback with shared work objects

computer-mediated communication
email and bulletin boards
structured message systems
text messaging
video, virtual environments

Email and bulletin boards
asynchronous/remote
familiar and most successful groupware
Recipients of email:
direct in To: field
copies in Cc: field
delivery identical – difference is social purpose
Email vs. bulletin boards

fan out
- one-to-one – email, direct communication
- one-to-many – email, distribution lists
 - BBs, broadcast
distribution control
- sender – email, private distribution list
- administrator – email, shared distribution list
- recipient – BBs, subscription to topics

Structured message systems

asynchronous/remote
- 'super' email
 - cross between email and a database
sender
 - fills in special fields
recipient
 - filters and sorts incoming mail
 - based on field contents
... but
- work by the sender
 - benefit for the recipient

Structured message systems (ctd)

Type: Seminar announcement
To: all
From: Alan Dix
Subject: departmental seminar
Time: 2:15 Wednesday
Place: D014
Speaker: W.T. Pooh
Title: The Honey Pot
Text: Recent research on socially constructed meaning has focused on the image of the Honey Pot and its dialectic interpretation within an encultured hermeneutic. This talk...

N.B. global structuring by designer vs. local structuring by participants
txt is gr8

- instant messaging
 - 1996 – ICQ small Israeli company
 - now millions
 - more like conversation
- SMS
 - y is it we al lv shrt msgs
 - originally a feature of internal management protocol
 - short messages (160 chars) and text with numbers
 - no-one predicted mass adoption!!
 - now phones with cameras for MMS

SMS in action

- serious uses too ... the ‘SPAM’ system
- two hostels for ex-psychiatric patients
- staff send SMS to central number
- messages appear in both offices
- avoids using phone
- ‘mission critical’ ... but used for jokes too!

Video conferences and communication

synchronous/remote

Technology:
- ISDN + video compression
- internet, web cams

major uses:
- video conferences
- pervasive video for social contact
- integration with other applications

often cheaper than face-to-face meetings
 (telecommunications costs vs. air flights)
Video issues ...

not a substitute for face-to-face meetings
– small field of view
– lack of reciprocity
– poor eye contact

One solution for lack of eye contact
... the video-tunnel

web-video

• video-conferencing – expensive technology
• but internet (almost) free!
• web-cams
 – used for face-to-face chat
 – for video-conferencing
 – for permanent web-cams
• low bandwidth
 – pictures ‘block out’ ... not terrible
 – audio more problematic
 – may use text chat

collaborative virtual environments (CVEs)

• meet others in a virtual world
 – participants represented – embodiment
 – artefacts too ...
 • computer (e.g. spreadsheet) and “real” (virtually) objects
 • text?
 – consistent orientation or easy to read

• MUDs (Multi-user domains)
 – 2D/3D places to meet on the web
 – users represented as avatars
internet foyer

- real foyer
 - large screen, camera
 - see virtual world on screen

- virtual world
 - representation of web
 - see real foyer on virtual screen

'outside' looking in

'inside' looking out
meeting and decision support systems

argumentation tools
meeting rooms
shared work surfaces

Meeting and decision support

In design, management and research, we want to:
- generate ideas
- develop ideas
- record ideas

primary emphasis
- common understanding

Three types of system

- argumentation tools
 - asynchronous co-located
 - recording the arguments for design decisions
- meeting rooms
 - synchronous co-located
 - electronic support for face-to-face meetings
- shared drawing surfaces
 - synchronous remote
 - shared drawing board at a distance
argumentation tools

asynchronous co-located
hypertext like tools to record design rationale

Two purposes:
- reminding the designers of the reasons for decisions
- communicating rationale between design teams

Mode of collaboration:
- very long term
- sometimes synchronous use also

gIBIS

graphical version of IBIS
- issue based information system

various node types including:
- issues e.g. ‘number of mouse buttons’
- positions e.g. ‘only one button’
- arguments e.g. ‘easy for novice’

linked by relationships such as:
- argument supports position
e.g., ‘easy for novice’ supports ‘only one button’

Meeting rooms

synchronous co-located
electronic support for face-to-face meetings
- individual terminals (often recessed)
- large shared screen (electronic whiteboard)
- special software
- U or C shaped seating around screen

Various modes:
- brainstorming, private use, WYSIWIS

WYSIWIS – ‘what you see is what I see’
- all screens show same image
- any participant can write/draw to screen
Typical meeting room

shared screen

meeting capture

- use ordinary whiteboard
- detector and special pens
- LCD projection on whiteboard
- low-cost alternative to dedicated meeting room

Issues for cooperation

Argumentation tools
- concurrency control
 - two people access the same node
 - one solution is node locking
- notification mechanisms
 - knowing about others' changes

Meeting rooms
- floor holders one or many?
- floor control policies
- who can write and when?
 - solution: locking + social protocol
- group pointer
 - for deictic reference (this and that)
Shared work surfaces

synchronous remote
At simplest, meeting rooms at a distance, but ...
- additional audio/video for social protocols and discussion
- network delays can be major problem
Additional special effects:
- participants write onto large video screen
- problems with parallax
 • shadow of other participant's hands appears on screen
- electronic image integrated with video and paper images
Example: TeamWorkStation
- remote teaching of Japanese calligraphy
 - student's strokes on paper overlaid with video of instructor's strokes

shared applications and artefacts

shared PCs and windows
shared editors, co-authoring tools
shared diaries
communication through the artefact

Shared Applications and Artefacts

Compare purpose of cooperation:
- meeting rooms and decision support systems
 - develop shared understanding
- shared applications and artefacts
 - work on the same objects
technology similar but primary purpose different
many different modalities (time/space matrix)
- shared windows – synchronous remote/co-located
- shared editors – synchronous remote/co-located
- co-authoring systems – largely asynchronous
- shared diaries – largely asynchronous remote
- shared information – any, but largely asynchronous
synchronous remote needs additional audio/video channel
Similar ... but different

- Shared PCs and shared window systems
 - Multiplex keyboard and screen
 - Individual applications not collaboration aware
 - Floor control problems:
 - User A types: 'interleave the'
 - User B types: 'keystrokes'
 - Result: 'inkeyerinterkeletalke tshe'
- Shared editors
 - An editor which is collaboration aware
 - One document – several users
 - Similar to shared screen in meeting room …
 - … with similar floor control problems!
 - Additional problem – multiple views

Shared editors - multiple views

Options:
- same view or different view
- single or separate insertion points

Single view
⇒ scroll wars

Multiple views
⇒ loss of context with *indexicals*

loss of WYSIWIS ...

*We will look at some of the options and how they affect the style of cooperation. Thinking about the shared view vs. different view options, it at first seems obvious that we should allow your screen your colleague's screen.

More adaptable systems are needed to allow for close and fluent interaction between users, and within the same group over time. We will look at some of the options and how they affect the style of cooperation. Thinking about the shared view vs. different view options, it at first seems obvious that we should allow your colleague's screen.

'I don't like the line at the top'
'but I just wrote that!'
Co-authoring systems

Emphasis is on long term document production, not editing
Two levels of representation
- the document itself
- annotation and discussion
Often some form of hypertext structure used
Similar problems of concurrency control to argumentation systems
Sometimes include rôles:
- author, commentator, reader, ...
- but who decides the rôles?
- and how flexible are they?

Shared diaries

Idea:
- make diaries and calendars more easily shared
- allow automatic meeting scheduling etc.
Issues for cooperation:
- privacy – who can see my diary entries?
- control – who can write in my diary?
Similar to file sharing issues, but need to be lightweight
Many systems have failed because they ignored these issues

Communication through the artefact

When you change a shared application:
- you can see the effect – feedback
- your colleagues can too – feedthrough
feedthrough enables ...
 communication through the artefact
Shared data

Feedthrough – not just with ‘real’ groupware …

Shared data is pervasive:
- shared files and databases
- casework files (often non-electronic)
- passing electronic copies of documents
- passing copies of spreadsheets

Often need direct communication as well, but indirect communication through the artefact central

Few examples of explicit design for cooperation.
- Liveware is an exception, a database with ‘merging’ of copies

frameworks for groupware

time/space matrix revisited!
shared information
communication and work awareness

Time/space matrix revisited
Refined time/space matrix

Mobile workers and home workers have infrequent communication — they require unsynchronised groupware.

<table>
<thead>
<tr>
<th></th>
<th>co-located</th>
<th>remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting rooms</td>
<td>video conferencing, video-mail, etc.</td>
<td>video conferencing, video-mail, etc.</td>
</tr>
<tr>
<td>(a) concurrent</td>
<td>shared work surfaces and windows</td>
<td>shared work surfaces and windows</td>
</tr>
<tr>
<td>(a/b) mixed</td>
<td>co-authoring systems</td>
<td>co-authoring systems</td>
</tr>
<tr>
<td>(b) serial</td>
<td>argumentation tools</td>
<td>argumentation tools</td>
</tr>
<tr>
<td>(c) unsynchronized</td>
<td>email and structured messages, electronic calendars</td>
<td>email and structured messages, electronic calendars</td>
</tr>
</tbody>
</table>

Shared information

Granularity of sharing

- **chunk size**
 - small – edit same word or sentence
 - large – section or whole document

- **update frequency**
 - frequent – every character
 - infrequent – upon explicit ‘send’

Level of sharing

Output:
- shared object
- shared view
- shared presentation

Input:
- single insertion point
- multiple insertion points
 - shared virtual keyboard
 - other participants visible
 - group pointer
 - no visibility
Levels of shared output

<table>
<thead>
<tr>
<th>Presentation</th>
<th>View</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>VILLAGE_STATS</td>
<td>Added houses, population from VILLAGE_STATS where population is less than 200, sorted by houses ascending</td>
<td></td>
</tr>
</tbody>
</table>

VILLAGE_STATS
- Burton
- Marleigh
- Westfield
- Thornby

<table>
<thead>
<tr>
<th>Village</th>
<th>Houses</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burton</td>
<td>79</td>
<td>671</td>
</tr>
<tr>
<td>Marleigh</td>
<td>15</td>
<td>123</td>
</tr>
<tr>
<td>Westfield</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>Thornby</td>
<td>90</td>
<td>51</td>
</tr>
</tbody>
</table>

Types of object to share
- Type of shared data ... influences style of sharing
- Linear transcript (e.g. text chat)
 - Monotonic
 - Only add - makes things easier
 - ... but sequenced - danger of race conditions
- Shared add-only hypertext
 - Monotonic & unsequenced
 - Several people can add children to same node
- Whiteboard
 - Monotonic & unsequenced ... apart from eraser!!
 - User defined structure
 - Complex object - shared hypertext or file system
 - !!!!!!!

Ordering problems (race conditions)
- Alison: It's a beautiful day. Let's go out after work. Perhaps not, I look awful after the late party.
- Brian: I agree totally.
- Alison: It's a beautiful day. Let's go out after work. I agree totally. Perhaps not, I look awful after the late party.
- Brian: I agree totally.
Integrating communication and work

Added:
- deixis – reference to work objects
- feedthrough – for communication through the artefact

Classified groupware by function it supported
- Good groupware – open to all aspects of cooperation
 - e.g., annotations in co-authoring systems
 - embedding direct communication
- bar codes – form of deixis, aids diffuse large scale cooperation

awareness

- what is happening?
- who is there
 - e.g., IM buddy list
- what has happened
 - and why?

TOWER – workspace awareness

- virtual 'space'
 - work objects (files etc.) shown as buildings
 - avatars where other people are working
 - built over flexible event infrastructure

see http://tower.gmd.de/
implementing groupware

feedback and network delays
architectures for groupware
feedthrough and network traffic
toolkits, robustness and scaling

Feedback and network delays

At least 2 network messages + four context switches
With protocols 4 or more network messages

Types of architecture

centralised – single copy of application and data
 • client-server – simplest case
 • N.B. opposite of X windows client/server
 • master-slave special case of client-server
 • N.B. server merged with one client
replicated – copy on each workstation
 • also called peer-peer
 • + local feedback
 • race conditions
Often 'half way' architectures:
 • local copy of application + central database
 • local cache of data for feedback
 • some hidden locking
Client-server architecture

Client-server architecture

Shared window architecture

Shared window architecture

Shared X
Feedthrough & traffic

- Need to inform all other clients of changes
- Few networks support broadcast messages, so ...
 - n participants \(\rightarrow \) n-1 network messages!
- Solution: increase granularity
 - reduce frequency of feedback
 - but, poor feedthrough \(\Rightarrow \) loss of shared context
- Trade-off: timeliness vs. network traffic

Graphical toolkits

Designed for single user interaction

Problems for groupware include
- pre-emptive widgets
 (e.g., pop-up menus)
- over-packaged text
 (single cursor, poor view control)

notification-based toolkits with callbacks help (chap. 8)

Robustness and scaleability

- crash in single-user interface – one sad user
- crash in groupware – disaster!

- groupware complex: networks, graphics etc.
- scaling up to large numbers of users?
- testing and debugging – hard!
... some tips ...

- network or server fails – standard solutions
- client fails – three "R's for server:
 - robust – server should survive client crash
 - reconfigure – detect and respond to failure
 - resynchronise – catch up when client restarts
- errors in programming
 - defensive programming
 - simple algorithms
 - formal methods
- unforeseen sequences of events
 - deadlock – never use blocking I/O
 - never assume particular orders
 - network packet = logical message

scaling and testing

- scaling up
 - robustness = simple algorithms
 - but don’t scale well – need to evolve
 - good software architecture helps
 - document fixed-size assumptions
 - know operating system limits (e.g. open files)
- testing for robustness
 - take off the kid gloves ... mistreat it
 - reboot, pull out network cable, random input
 - create a rogue client, simulate high loads
 - and when you think it is perfect
 - ... give it to some computing students to test