chapter 16
dialogue notations and design

Dialogue Notations and Design

- Dialogue Notations
 - Diagrammatic
 - state transition networks, JSD diagrams, flow charts
 - Textual
 - formal grammars, production rules, CSP

- Dialogue linked to
 - the semantics of the system – what it does
 - the presentation of the system – how it looks

- Formal descriptions can be analysed
 - for inconsistent actions
 - for difficult to reverse actions
 - for missing actions
 - for potential miskeying errors

what is dialogue?

- conversation between two or more parties
 - usually cooperative

- in user interfaces
 - refers to the structure of the interaction
 - syntactic level of human–computer ‘conversation’

- levels
 - lexical – shape of icons, actual keys pressed
 - syntactic – order of inputs and outputs
 - semantic – effect on internal application/data
structured human dialogue

- human-computer dialogue very constrained
- some human-human dialogue formal too …

Minister: do you man’s name take this woman …
Man: I do
Minister: do you woman’s name take this man …
Woman: I do
Man: With this ring I thee wed
(Woman places ring on man’s finger)
Woman: With this ring I thee wed (places ring …)
Minister: I now pronounce you man and wife

lessons about dialogue

- wedding service
 - sort of script for three parties
 - specifies order
 - some contributions fixed – “I do”
 - others variable – “do you man’s name …”
 - instructions for ring concurrent with saying words “with this ring …”
- if you say these words are you married?
 - only if in the right place, with marriage licence
 - syntax not semantics

... and more

- what if woman says “I don’t”?
- real dialogues often have alternatives:

 Judge: How do you plead guilty or not guilty?
 Defendant: either Guilty or Not guilty

 - the process of the trial depends on the defendants response
- focus on normative responses
 - doesn’t cope with judge saying “off with her head”
 - or in computer dialogue user standing on keyboard!
dialogue design notations

- dialogue gets buried in the program
- in a big system can we:
 - analyse the dialogue:
 - can the user always get to see current shopping basket
 - change platforms (e.g. Windows/Mac)
 - dialogue notations helps us to
 - analyse systems
 - separate lexical from semantic
- ... and before the system is built
 - notations help us understand proposed designs

graphical notations

state-transition nets (STN)
Petri nets, state charts
flow charts, JSD diagrams

State transition networks (STN)

- circles - states
- arcs - actions/events
State transition networks - events

- arc labels a bit cramped because:
 - notation is ‘state heavy’
 - the events require most detail

State transition networks - states

- labels in circles a bit uninformative:
 - states are hard to name
 - but easier to visualise

Hierarchical STNs

- managing complex dialogues
- named sub-dialogues
Concurrent dialogues - I
simple dialogue box

Text Style
- **bold**
- *italic*
- *underline*

Concurrent dialogues - II
three toggles - individual STNs

- NO bold
- click on 'bold'
- bold

- NO italic
- click on 'italic'
- italic

- NO underline
- click on 'underline'
- underline

Concurrent dialogues - III
bold and italic combined

- NO style
- click on 'bold'
- bold

- italic
- click on 'italic'
- italic

- bold italic
- click on 'bold'
- bold italic
Concurrent dialogues - IV
all together - combinatorial explosion

escapes

• 'back' in web, escape/cancel keys
 - similar behaviour everywhere
 - end up with spaghetti of identical behaviours
• try to avoid this
 e.g. on high level diagram
 'normal' exit for each submenu
 plus separate escape arc: active 'everywhere' in submenu

help menus

• similar problems
 - nearly the same everywhere
 - but return to same point in dialogue
 - could specify on STN ... but very messy
 - usually best added at a 'meta' level
Petri nets

- one of the oldest notations in computing!
- flow graph:
 - places - a bit like STN states
 - transitions - a bit like STN arcs
 - counters - sit on places (current state)
- several counters allowed
 - concurrent dialogue states
- used for UI specification (ICO at Toulouse)
 - tool support – Petshop

Petri net example

- user presses 'Bold'
- user presses 'Italic'
- user actions represented as a new counter
- transition ‘fires’ when all input places have counters

State charts

- used in UML
- extension to STN
 - hierarchy
 - concurrent sub-nets
 - escapes
 - OFF always active
 - history
 - link marked H goes back to last state on re-entering subdialogue
Flowcharts

- familiar to programmers
- boxes
 - process/event
 - not state
- use for dialogue
 (not internal algorithm)

it works!

- formal notations – too much work?
- COBOL transaction processing
 - event-driven – like web interfaces
 - programs structure
 - dialogue structure
- used dialogue flow charts
 - discuss with clients
 - transform to code
 - systematic testing
 - 100% productivity gain
- formalism saves time!!

JSD diagrams

- for tree structured dialogues
 - less expressive
 - greater clarity

Personnel
Record
System

transaction

logout

display
employee
record

add
employee
record

delete
employee
record

change
employee
record
textual notations

grammars
production rules
CSP and event algebras

Textual - Grammars

- Regular expressions
 - e.g. line click click* double-click
- Compare with ISD
 - same computational model
 - different notation
- BNF
 \[
 \text{expr} :: \text{empty} \\
 \quad | \text{atom expr} \\
 \quad | (\text{expr})^{+} \text{expr}
 \]
- More powerful than regular exp. or STNs
- Still NO concurrent dialogue

Production rules

- Unordered list of rules:

 \text{if condition then action}

 - condition based on state or pending events
 - every rule always potentially active

- Good for concurrency
- Bad for sequence
Event based production rules

Sel-line ⇒ first
C-point first ⇒ rest
C-point rest ⇒ rest
D-point rest ⇒ < draw line >

• Note:
 - events added to list of pending events
 - 'first' and 'rest' are internally generated events
• Bad at state!

Prepositional Production System

• State based
• Attributes:
 - Mouse: { mouse-off, select-line, click-point, double-click }
 - Line-state: { menu, first, rest }
• Rules (feedback not shown):
 - select-line ⇒ mouse-off first
 - click-point first ⇒ mouse-off rest
 - click-point rest ⇒ mouse-off
 - double-click rest ⇒ mouse-off menu
• Bad at events!

CSP and process algebras

• used in Alexander's SPI, and Agent notation
• good for sequential dialogues
 - Bold-tog = select-bold? ⇒ bold-on ⇒ select-bold?
 - Bold-off = select-bold?
 - Italic-tog = . . .
 - Under-tog = . . .
• and concurrent dialogue
 - Dialogue-box = Bold-tog || Italic-tog || Under-tog
• but causality unclear
Dialogue Notations -
Summary
- Diagrammatic
 - STN, JSD, Flow charts
- Textual
 - grammars, production rules, CSP
- Issues
 - event base vs. state based
 - power vs. clarity
 - model vs. notation
 - sequential vs. concurrent

Semantics Alexander SPI (i)
- Two part specification:
 - EventCSP - pure dialogue order
 - EventISL - target dependent semantics
- dialogue description - centralised
- syntactic/semantic trade-off - tolerable

Semantics Alexander SPI (ii)
- EventCSP
 login = login-mess -> get-name -> Passed
 Passed = passed-mess -> [invalid -> login () valid -> Session]
- EventISL
 event: login-mess
 prompt: true
 out: "Login:"
 event: get-name
 uses: input
 set: user-id = input
 event: valid
 uses: input, user-id, passwd-db
 wgen: passwd-id = passwd-db(user-id)
Semantics - raw code

- event loop for word processor
- dialogue description - very distributed
- syntactic/semantic trade-off - terrible!

```plaintext
switch ( ev.type ) {
  case button_down:
    if ( in_text ( ev.pos ) ) {
      mode = selecting;
      mark_selection_start(ev.pos);
    }
    ...  
  case button_up:
    if ( in_text ( ev.pos )
        && mode == selecting ) {
      mode = normal;
      mark_selection_end(ev.pos);
    }
    ...  
  case mouse_move:
    if (mode == selecting ) {
      extend_selection(ev.pos);
    }
    ...
} /* end of switch */
```

Action properties

- completeness
 - missed arcs
 - unforeseen circumstances
- determinism
 - several arcs for one action
 - deliberate: application decision
 - accident: production rules
- nested escapes
- consistency
 - same action, same effect?
 - modes and visibility

Checking properties (i)

- completeness
 - double-click in circle states?
Checking properties (ii)

- Reversibility:
 - to reverse select `line`
 - click
Checking properties (ii)

- Reversibility:
 - to reverse select 'line'
 - click - double click - select 'graphics'
 - (3 actions)
- N.B. not undo

State properties

- reachability
 - can you get anywhere from anywhere?
 - and how easily
- reversibility
 - can you get to the previous state?
 - but NOT undo
- dangerous states
 - some states you don’t want to get to

Dangerous States

- word processor: two modes and exit
 - F1 - changes mode
 - F2 - exit (and save)
 - Esc - no mode change
- but ... Esc resets autosave
Dangerous States (ii)

- exit with/without save → dangerous states
- duplicate states - semantic distinction

Lexical Issues

- visibility
 - differentiate modes and states
 - annotations to dialogue
- style
 - command - verb noun
 - mouse based - noun verb
- layout
 - not just appearance ...

layout matters

- word processor - dangerous states
- old keyboard - OK
layout matters

- new keyboard layout

 F1 F2 F3

 intend F1-F2 (save)
 finger catches Esc

 F1-Esc-F2 - disaster!

Dialogue Analysis - Summary

- Semantics and dialogue
 - attaching semantics
 - distributed/centralised dialogue description
 - maximising syntactic description

- Properties of dialogue
 - action properties: completeness, determinism, consistency
 - state properties: reachability, reversibility, dangerous states

- Presentation and lexical issues
 - visibility, style, layout
 - N.B. not independent of dialogue
Dialogue Analysis - Summary

- Semantics and dialogue
 - attaching semantics
 - distributed/centralised dialogue description
 - maximising syntactic description
- Properties of dialogue
 - action properties: completeness, determinism, consistency
 - state properties: reachability, reversibility, dangerous states
- Presentation and lexical issues
 - visibility, style, layout
 - N.B. not independent of dialogue

Digital watch - User Instructions

- two main modes
- limited interface
 - 3 buttons
- button A changes mode

Digital watch - User Instructions

- dangerous states
 - guarded by two second hold
- completeness
 - distinguish depress A and release A
 - what do they do in all modes?
Digital watch - Designers instructions

and ...

that's just one button

Time display

Stop watch

Time setting

Alarm setting

Press A 2 seconds

Press A 2 seconds

Release A

Release A