chapter 15

task models

What is Task Analysis?

Methods to analyse people’s jobs:
- what people do
- what things they work with
- what they must know

An Example

- in order to clean the house
 - get the vacuum cleaner out
 - fix the appropriate attachments
 - clean the rooms
 - when the dust bag gets full, empty it
 - put the vacuum cleaner and tools away

- must know about:
 - vacuum cleaners, their attachments, dust bags, cupboards, rooms etc.
Approaches to task analysis

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people
 - who perform them
- lots of different notations/techniques

General method

- observe
- collect unstructured lists of words and actions
- organize using notation or diagrams

Differences from other techniques

<table>
<thead>
<tr>
<th>Systems analysis</th>
<th>vs.</th>
<th>Task analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>system design</td>
<td>focus</td>
<td>the user</td>
</tr>
<tr>
<td>Cognitive models</td>
<td>vs.</td>
<td>Task analysis</td>
</tr>
<tr>
<td>internal mental state</td>
<td>focus</td>
<td>external actions</td>
</tr>
<tr>
<td>practiced 'unit' task</td>
<td>focus</td>
<td>whole job</td>
</tr>
</tbody>
</table>
Task Decomposition

Aims:
- describe the actions people do
- structure them within task subtask hierarchy
- describe order of subtasks

Variants:
- Hierarchical Task Analysis (HTA)
 - most common
- CTT (CNUCE, Pisa)
 - uses LOTOS temporal operators

Textual HTA description

Hierarchy description ...

0. In order to clean the house
 1. Get the vacuum cleaner out
 2. Get the appropriate attachment
 3. Clean the rooms
 3.1. Clean the hall
 3.2. Clean the living rooms
 3.3. Clean the bedrooms
 4. Empty the dust bag
 5. Put vacuum cleaner and attachments away

... and plans

Plan 0: do 1 - 2 - 3 - 5 in that order when the dust bag gets full do 4
Plan 3: do any of 3.1, 3.2 or 3.3 in any order depending on which rooms need cleaning

N.B. Only the plans denote order

Generating the hierarchy

1. Get list of tasks
2. Group tasks into higher level tasks
3. Decompose lowest level tasks further

Stopping rules
- How do we know when to stop?
- Is "empty the dust bag" simple enough?
- Purpose: expand only relevant tasks
- Motor actions: lowest sensible level
Tasks as explanation

- imagine asking the user the question: what are you doing now?
- for the same action the answer may be:
 - typing ctrl-B
 - making a word bold
 - emphasising a word
 - editing a document
 - writing a letter
 - preparing a legal case

HTA as grammar

- can parse sentence into letters, nouns, noun phrase, etc.

The cat sat on the mat.

Parse scenario using HTA

- get out cleaner
- fix carpet head
- clean dining room
- clean main bedroom
- empty dustbag
- clean sitting room
- put cleaner away

0. In order to clean the house
1. get the vacuum cleaner out
2. get the appropriate attachment
3. clean the rooms
 3.1. clean the hall
 3.2. clean the living rooms
 3.3. clean the bedrooms
4. empty the dustbag
5. put vacuum cleaner and attachments away
Diagrammatic HTA

Refining the description

Given initial HTA (textual or diagram)

How to check / improve it?

Some heuristics:

- paired actions: e.g., where is ‘turn on gas’
- restructure: e.g., generate task ‘make pot’
- balance: e.g., is ‘pour tea’ simpler than making pot?
- generalise: e.g., make one cup …. or more

Refined HTA for making tea
Types of plan

fixed sequence - 1.1 then 1.2 then 1.3
optional tasks - if the pot is full 2
wait for events - when kettle boils 1.4
cycles - do 5.1 5.2 while there are still empty cups
time-sharing - do 1; at the same time ...
discretionary - do any of 3.1, 3.2 or 3.3 in any order
mixtures - most plans involve several of the above

waiting ...

• is waiting part of a plan? ... or a task?
• generally
 - task – if ‘busy’ wait
 • you are actively waiting
 - plan – if end of delay is the event
 • e.g. “when alarm rings”, “when reply arrives”
• in this example ...
 - perhaps a little redundant ...
 - TA not an exact science

Knowledge Based Analyses

Focus on:
 Objects - used in task
 Actions - performed
 + Taxonomies - represent levels of abstraction

see chapter 19 for more on delays!
Knowledge-Based Example ...

motor controls
steering steering wheel, indicators
direct ignition, accelerator, foot brake
gearing clutch, gear stick
lights external headlights, hazard lights
temperature control, air direction, fan, rear screen heater
wash/wipe front wipers, rear wipers
washers front wipers, rear wipers
heating heater, foot brake, door lock
radio numerous!

Task Description Hierarchy

Three types of branch point in taxonomy:
XOR - normal taxonomy
object in one and only one branch
AND - object must be in both multiple classifications
OR - weakest case can be in one, many or none

wash/wipe AND
 function XOR
 wipe front wipers, rear wipers
 position XOR
 front front wipers, front washers
 rear rear wipers, rear washers

Larger TDH example

kitchen item AND
/____shape XR
/ |____dished mixing bowl, casserole, saucepan
/ |____flat plate, chopping board, frying pan
/____function OR
|____preparation mixing bowl, plate, chopping board
|____cooking frying pan, casserole, saucepan
|____drinking XR
|____for food plate, soup bowl, casserole
|____for drink glass

N.B. '/ ' | ' |' used for branch types.
More on TDH

Uniqueness rule:
- can the diagram distinguish all objects?
 e.g., plate is:
 kitchen item/shape(flat)/function(preparation,dining(for food))/
 nothing else fits this description

Actions have taxonomy too:
 kitchen job OK
 ___ preparation beating, mixing
 ___ cooking frying, boiling, baking
 ___ dining pouring, eating, drinking

Abstraction and cuts

After producing detailed taxonomy
 'cut' to yield abstract view

That is, ignore lower level nodes:
 e.g. cutting above shape and below dining, plate becomes:
 kitchen item/function(preparation,dining)/

This is a term in Knowledge Representation Grammar (KRG)

These can be more complex:
 e.g. 'beating in a mixing bowl' becomes:
 kitchen job(preparation) using a
 kitchen item/function(preparation)/

Entity-Relationship Techniques

Focus on objects, actions and their relationships

Similar to OO analysis, but ...
- includes non-computer entities
- emphasises domain understanding not implementation

Running example
 "Vera's Veggies" - a market gardening firm
 owner/manager: Vera Bradshaw
 employees: Sam Gummage and Tony Peagreen
 various tools including a tractor 'Fergie'
 two fields and a glasshouse
 new computer controlled irrigation system
Objects

Start with list of objects and classify them:

Concrete objects:
- simple things: spade, plough, glasshouse

Actors:
- human actors: Vera, Sam, Tony, the customers
 what about the irrigation controller?

Composite objects:
- sets: the team = Vera, Sam, Tony
- tuples: tractor may be < Fergie, plough >

Attributes

To the objects add attributes:

Object Pump3 simple – irrigation pump

Attributes:
- status: on/off/faulty
- capacity: 100 litres/minute

N.B. need not be computationally complete

Actions

List actions and associate with each:

agent – who performs the actions
patient – which is changed by the action
instrument – used to perform action

examples:
- Sam (agent) planted (action) the leeks (patient)
- Tony dug the field with the spade (instrument)
Actions (ctd)

implicit agents – read behind the words
'the field was ploughed' – by whom?

indirect agency – the real agent?
'Vera programmed the controller to irrigate the field'

messages – a special sort of action
'Vera told Sam to ...'

rôles – an agent acts in several rôles
Vera as worker or as manager

direct agency

example - objects and actions

Object Sam human actor
 Actions:
 S1: drive tractor
 S2: dig the carrots

Object Vera human actor
 Actions:
 V1: plant marrow seed
 V2: program irrigation controller
 V3: tell Sam to dig the carrots

Object the men composite
 Comprises: Sam, Tony

Object glasshouse simple
 Attribute:
 humidity: 0-100%

Object Irrigation Controller non-human actor
 Actions:
 IC1: turn on Pump1
 IC2: turn on Pump2
 IC3: turn on Pump3

Object Marrow simple
 Actions:
 M1: germinate
 M2: grow

Events

... when something happens

• performance of action
 'Sam dug the carrots'

• spontaneous events
 'the marrow seed germinated'
 'the humidity drops below 25%'

• timed events
 'at midnight the controller turns on'
Relationships

- object-object
 - social: Sam is subordinate to Vera
 - spatial: pump 3 is in the glasshouse
- action-object
 - agent (listed with object)
 - patient and instrument
- actions and events
 - temporal and causal: "Sam digs the carrots because Vera told him"
- temporal relations
 - use HTA or dialogue notations
 - show task sequence (normal HTA)
 - show object lifecycle

example - events and relations

Events:
- Ev1: humidity drops below 25%
- Ev2: midnight

Relations: object-object
- location (Pump3, glasshouse)
- location (Pump1, Parker’s Patch)

Relations: action-object
- patient (V3, Sam)
 - Vera tells Sam to dig
- patient (S2, the carrots)
 - Sam digs the carrots
- instrument (S2, spade)
 - ... with the spade

Relations: action-event
- before (Ev1, M1)
 - the marrow must be sown before it can germinate
- triggers (Ev1, IC3)
 - when humidity drops below 25%, the controller turns on pump 3
- causes (V2, IC1)
 - the controller turns on the pump because Vera programmed it

Sources of Information

Documentation
- N.B. manuals say what is supposed to happen
- but, good for key words and prompting interviews

Observation
- formal/informal, laboratory/field (see Chapter 9)

Interviews
- the expert: manager or worker? (ask both!)
Early analysis

Extraction from transcripts
- list nouns (objects) and verbs (actions)
- beware technical language and context: ‘the rain poured’ vs. ‘I poured the tea’

Sorting and classifying
- grouping or arranging words on cards
- ranking objects/actions for task relevance (see ch. 9)
- use commercial outliner

Iterative process:
- data sources --> analysis
 ... but costly, so use cheap sources where available

Uses - manuals & documentation

Conceptual Manual
- from knowledge or entity–relations based analysis
- good for open ended tasks

Procedural ‘How to do it’ Manual
- from HTA description
- good for novices
- assumes all tasks known

To make cups of tea
- boil water –– see page 2
- empty pot
- make pot –– see page 3
- wait 4 or 5 minutes
- pour tea –– see page 4

Make pot of tea
- warm pot
- put tea leaves in pot
- pour in boiling water
 ... page 3 ...

Uses - requirements & design

Requirements capture and systems design
- lifts focus from system to use
- suggests candidates for automation
- uncovers user’s conceptual model

Detailed interface design
- taxonomies suggest menu layout
- object/action lists suggest interface objects
- task frequency guides default choices
- existing task sequences guide dialogue design

NOTE. task analysis is never complete
- rigid task based design → inflexible system