chapter 11
user support

user support

• Issues
 – different types of support at different times
 – implementation and presentation both important
 – all need careful design

• Types of user support
 – quick reference, task specific help, full explanation, tutorial

• Provided by help and documentation
 – help - problem-oriented and specific
 – documentation - system-oriented and general
 – same design principles apply to both

Requirements

• Availability
 – continuous access concurrent to main application
• Accuracy and completeness
 – help matches and covers actual system behaviour
• Consistency
 – between different parts of the help system and paper documentation
• Robustness
 – correct error handling and predictable behaviour
• Flexibility
 – allows user to interact in a way appropriate to experience and task
• Unobtrusiveness
 – does not prevent the user continuing with work
Approaches to user support

• Command assistance
 – User requests help on particular command e.g., UNIX man, DOS help
 – Good for quick reference
 – Assumes user know what to look for

• Command prompts
 – Provide information about correct usage when an error occurs
 – Good for simple syntactic errors
 – Also assumes knowledge of the command

Approaches to user support (ctd)

• Context sensitive help
 – Help request interpreted according to context in which it occurs e.g., tooltips

• On-line tutorials
 – User works through basics of application in a test environment
 – Can be useful but are often inflexible

• On-line documentation
 – Paper documentation is made available on computer
 – Continually available in common medium
 – Can be difficult to browse
 – Hypertext used to support browsing

Wizards and assistants

• Wizards
 – Task specific tool leads the user through task, step by step
 – Using user’s answers to specific questions
 – Example: resume
 – Useful for safe completion of complex or infrequent tasks
 – Constrained task execution so limited flexibility
 – Must allow user to go back

• Assistants
 – Monitor user behaviour and offer contextual advice
 – Can be irritating e.g. MS paperclip
 – Must be under user control e.g. XP smart tags
Adaptive Help Systems

- Use knowledge of the context, individual user, task, domain and instruction to provide help adapted to user’s needs.

- Problems
 - knowledge requirements considerable
 - who has control of the interaction?
 - what should be adapted?
 - what is the scope of the adaptation?

Knowledge representation
User modeling

- All help systems have a model of the user
 - single, generic user (non-intelligent)
 - user-configured model (adaptable)
 - system-configure model (adaptive)

Approaches to user modelling

- Quantification
 - user moves between levels of expertise
 - based on quantitative measure of what he knows.

- Stereotypes
 - user is classified into a particular category.

- Overlay
 - idealized model of expert use is constructed
 - actual use compared to ideal
 - model may contain the commonality or difference
 - Special case: user behaviour compared to known error catalogue
Knowledge representation
Domain and task modelling

- Covers
 - common errors and tasks
 - current task
- Usually involves analysis of command sequences.
- Problems
 - representing tasks
 - interleaved tasks
 - user intention

Knowledge representation
Advisory strategy

- involves choosing the correct style of advice for a given situation.
 - e.g. reminder, tutorial, etc.
- few intelligent help systems model advisory strategy, but choice of strategy is still important.

Techniques for knowledge representation

- rule based (e.g. logic, production rules)
 - knowledge presented as rules and facts
 - interpreted using inference mechanism
 - can be used in relatively large domains.
- frame based (e.g. semantic network)
 - knowledge stored in structures with slots to be filled
 - useful for a small domain.
- network based
 - knowledge represented as relationships between facts
 - can be used to link frames.
- example based
 - knowledge represented implicitly within decision structure
 - trained to classify rather than programmed with rules
 - requires little knowledge acquisition
Problems with knowledge representation and modelling

- knowledge acquisition
- resources
- interpretation of user behaviour

Issues in adaptive help

- Initiative
 - does the user retain control or can the system direct the interaction?
 - can the system interrupt the user to offer help?
- Effect
 - what is going to be adapted and what information is needed to do this?
 - only model what is needed.
- Scope
 - is modelling at application or system level?
 - latter more complex e.g. expertise varies between applications.

Designing user support

- User support is not an ‘add on’
 - should be designed integrally with the system.
- Concentrate on content and context of help rather than technological issues.
Presentation issues

- How is help requested?
 - command, button, function (on/off), separate application
- How is help displayed?
 - new window, whole screen, split screen,
 - pop-up boxes, hint icons
- Effective presentation requires
 - clear, familiar, consistent language
 - instructional rather than descriptive language
 - avoidance of blocks of text
 - clear indication of summary and example information

Implementation issues

<table>
<thead>
<tr>
<th>Is help</th>
<th>What resources are available?</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating system command</td>
<td>- screen space</td>
<td>- flexibility and extensibility</td>
</tr>
<tr>
<td>meta command</td>
<td>- memory capacity</td>
<td>- hard copy</td>
</tr>
<tr>
<td>application</td>
<td>- speed</td>
<td>- browsing</td>
</tr>
<tr>
<td>Structure of help data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>file hierarchy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>database</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>