 universal design principles

- equitable use
- flexibility in use
- simple and intuitive to use
- perceptible information
- tolerance for error
- low physical effort
- size and space for approach and use

Multi-Sensory Systems

- More than one sensory channel in interaction
 - e.g. sounds, text, hypertext, animation, video, gestures, vision
- Used in a range of applications:
 - particularly good for users with special needs, and virtual reality
- Will cover
 - general terminology
 - speech
 - non-speech sounds
 - handwriting
- considering applications as well as principles

Usable Senses

The 5 senses (sight, sound, touch, taste and smell) are used by us every day
- each is important on its own
- together, they provide a fuller interaction with the natural world

Computers rarely offer such a rich interaction
Can we use all the available senses?
- ideally, yes
- practically – no
We can use • sight • sound • touch (sometimes)
We cannot (yet) use • taste • smell

Multi-modal vs. Multi-media

- Multi-modal systems
 - use more than one sense (or mode) of interaction
 - e.g. visual and aural senses: a text processor may speak the words as well as echoing them to the screen
- Multi-media systems
 - use a number of different media to communicate information
 - e.g. a computer-based teaching system: may use video, animation, text and still images: different media all using the visual mode of interaction: may also use sounds, both speech and non-speech: two more media, now using a different mode

Speech

Human beings have a great and natural mastery of speech
- makes it difficult to appreciate the complexities
but
- it’s an easy medium for communication
Structure of Speech

phonemes
- 40 of them
- basic atomic units
- sound slightly different depending on the context they are in, these larger units are...
allophones
- all the sounds in the language
- between 120 and 130 of them
- these are formed into...
morphemes
- smallest unit of language that has meaning.

Speech (cont’d)

Other terminology:
• prosody
 - alteration in tone and quality
 - variations in emphasis, stress, pauses and pitch
 - impart more meaning to sentences.
• co-articulation
 - the effect of context on the sound
 - transforms the phonemes into allophones
• syntax – structure of sentences
• semantics – meaning of sentences

Speech Recognition Problems

• Different people speak differently:
 - accent, intonation, stress, idiom, volume, etc.
• The syntax of semantically similar sentences may vary.
• Background noises can interfere.
• People often "ummm...." and "errr....."
• Words not enough - semantics needed as well
 - requires intelligence to understand a sentence
 - context of the utterance often has to be known
 - also information about the subject and speaker
 e.g. even if "Errr.... I, um, don't like this" is recognised, it is a fairly useless piece of information on it's own

The Phonetic Typewriter

• Developed for Finnish (a phonetic language, written as it is said)
• Trained on one speaker, will generalise to others.
• A neural network is trained to cluster together similar sounds, which are then labelled with the corresponding character.
• When recognising speech, the sounds uttered are allocated to the closest corresponding output, and the character for that output is printed.
 - requires large dictionary of minor variations to correct general mechanism
 - noticeably poorer performance on speakers it has not been trained on

The Phonetic Typewriter (ctd)

Speech Recognition: useful?

• Single user or limited vocabulary systems
 e.g. computer dictation
• Open use, limited vocabulary systems can work satisfactorily
 e.g. some voice activated telephone systems
• general user, wide vocabulary systems ...
 ... still a problem
• Great potential, however
 - when users hands are already occupied
 e.g. driving, manufacturing
 - for users with physical disabilities
 - lightweight, mobile devices
Speech Synthesis

The generation of speech

Useful
- natural and familiar way of receiving information

Problems
- similar to recognition: prosody particularly

Additional problems
- intrusive - needs headphones, or creates noise in the workplace
- transient - harder to review and browse

Speech Synthesis: useful?

Successful in certain constrained applications
when the user:
- is particularly motivated to overcome problems
- has few alternatives

Examples:
- screen readers
 - read the textual display to the user
 - utilised by visually impaired people
- warning signals
 - spoken information sometimes presented to pilots whose visual and haptic skills are already fully occupied

Non-Speech Sounds

boings, bangs, squeaks, clicks etc.

- commonly used for warnings and alarms
- Evidence to show they are useful
 - fewer typing mistakes with key clicks
 - video games harder without sound
- Language/culture independent, unlike speech

Non-Speech Sounds: useful?

- Dual mode displays:
 - information presented along two different sensory channels
 - redundant presentation of information
 - resolution of ambiguity in one mode through information in another
- Sound good for
 - transient information
 - background status information

 e.g. Sound can be used as a redundant mode in the Apple Macintosh; almost any user action (file selection, window active, disk insert, search error, copy complete, etc.) can have a different sound associated with it.

Auditory Icons

- Use natural sounds to represent different types of object or action
- Natural sounds have associated semantics which can be mapped onto similar meanings in the interaction
 e.g. throwing something away
 - the sound of smashing glass
- Problem: not all things have associated meanings
- Additional information can also be presented:
 - muffled sounds if object is obscured or action is in the background
 - use of stereo allows positional information to be added

SonicFinder for the Macintosh

- items and actions on the desktop have associated sounds
- folders have a papery noise
- moving files – dragging sound
- copying – a problem ...
 - sound of a liquid being poured into a receptacle
 - rising pitch indicates the progress of the copy
- big files have louder sound than smaller ones
Earcons

- Synthetic sounds used to convey information
- Structured combinations of notes (motives) represent actions and objects
- Motives combined to provide rich information
 - compound earcons
 - multiple motives combined to make one more complicated earcon

Earcons (ctd)

- family earcons
 similar types of earcons represent similar classes of action or similar objects: the family of "errors" would contain syntax and operating system errors

- Earcons easily grouped and refined due to compositional and hierarchical nature

- Harder to associate with the interface task since there is no natural mapping

Handwriting recognition

Handwriting is another communication mechanism which we are used to in day-to-day life

- Technology
 - Handwriting consists of complex strokes and spaces
 - Captured by digitising tablet
 - strokes transformed to sequence of dots
 - large tablets available
 - suitable for digitising maps and technical drawings
 - smaller devices, some incorporating thin screens to display the information
 - PDAs such as Palm Pilot
 - tablet PCs

Handwriting recognition (ctd)

- Problems
 - personal differences in letter formation
 - co-articulation effects

- Breakthroughs:
 - stroke not just bitmap
 - special 'alphabet' - Graffeti on PalmOS

- Current state:
 - usable – even without training
 - but many prefer keyboards!

Gesture

- applications
 - gestural input - e.g. "put that there"
 - sign language

- technology
 - data glove
 - position sensing devices e.g MIT Media Room

- benefits
 - natural form of interaction - pointing
 - enhance communication between signing and non-signing users

- problems
 - user dependent, variable and issues of coarticulation
Users with disabilities

- visual impairment
 - screen readers, SonicFinder
- hearing impairment
 - text communication, gesture, captions
- physical impairment
 - speech I/O, eye gaze, gesture, predictive systems (e.g., Reactive keyboard)
- speech impairment
 - speech synthesis, text communication
- dyslexia
 - speech input, output
- autism
 - communication, education

... plus ...

- age groups
 - older people e.g. disability aids, memory aids, communication tools to prevent social isolation
 - children e.g. appropriate input/output devices, involvement in design process
- cultural differences
 - influence of nationality, generation, gender, race, sexuality, class, religion, political persuasion etc. on interpretation of interface features
 - e.g. interpretation and acceptability of language, cultural symbols, gesture and colour