

text entry devices keyboards (QWERTY et al.) chord keyboards, phone pads handwriting, speech

Handwriting recognition • Text can be input into the computer, using a pen and a digesting tablet - natural interaction • Technical problems: - capturing all useful information - stroke path, pressure, etc. in a natural manner - segmenting joined up writing into individual letters - interpreting individual letters - coping with different styles of handwriting • Used in PDAs, and tablet computers leave the keyboard on the desk!

Speech recognition

Improving rapidly

Most successful when:
- single user – initial training and learns peculiarities
- limited vocabulary systems

Problems with
- external noise interfering
- imprecision of pronunciation
- large vocabularies
- different speakers

Touchpad

- · small touch sensitive tablets
- · 'stroke' to move mouse pointer
- · used mainly in laptop computers
- · good 'acceleration' settings important
 - fast stroke
 - · lots of pixels per inch moved
 - · initial movement to the target

 - slow stroke · less pixels per inch
 - · for accurate positioning

Trackball and thumbwheels

Trackball

- ball is rotated inside static housing
 - · like an upsdie down mouse!
- relative motion moves cursor
- indirect device, fairly accurate - separate buttons for picking
- very fast for gaming
- used in some portable and notebook computers.

Thumbwheels .

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

Joystick and keyboard nipple

Joystick

- indirect
- pressure of stick = $\underline{\text{velocity}}$ of movement
- buttons for selection on top or on front like a trigger
- often used for computer games
- aircraft controls and 3D navigation

Keyboard nipple

- for laptop computers
- miniature joystick in the middle of the keyboard

Touch-sensitive screen

- Detect the presence of finger or stylus on the screen.
 works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 fast, and requires no specialised pointer
 good for menu selection
 suitable for use in hostile environment: clean and safe from damage.

- Disadvantages:
 finger can mark screen
 imprecise (finger is a fairly blunt instrument!)
 difficult to select small regions or perform accura
 lifting arm can be tiring

Stylus and light pen

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection
 used in PDA, tablets PCs and drawing tables

HUMAN-COMPUTE INTERACTION

Light Pen

- now rarely used
- uses light from screen to detect location

- very direct and obvious to use
- but can obscure screen

Digitizing tablet

- · Mouse like-device with cross hairs
- · used on special surface
 - rather like stylus
- very accurate
 - used for digitizing maps

HUMAN-COMPUTER INTERACTION

Health hazards of CRT!

- X-rays: largely absorbed by screen (but not at rear!)
 UV- and IR-radiation from phosphors: insignificant levels
- Radio frequency emissions, plus ultrasound (~16kHz)
 Electrostatic field leaks out through tube to user. Intensity dependant on distance and humidity. Can cause rashes.
- Electromagnetic fields (50Hz-0.5MHz). Create induction currents in conductive materials, including the human body. Two types of effects attributed to this: visual system high incidence of cataracts in VDU operators, and concern over reproductive disorders (miscarriages and birth defects).

Health hints ...

- · do not sit too close to the screen
- · do not use very small fonts
- do not look at the screen for long periods without a break
- do not place the screen directly in front of a bright window
- work in well-lit surroundings
- ★ Take extra care if pregnant. but also posture, ergonomics, stress

Liquid crystal displays

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks,
 ... and increasingly on desktop and even for home TV
- also used in dedicted displays:
 digital watches, mobile phones, HiFi controls
- How it works

 - Top plate transparent and polarised, bottom plate reflecting.
 Light passes through top plate and crystal, and reflects back to eye.
 - eye.
 Voltage applied to crystal changes polarisation and hence colour
 N.B. light reflected not emitted => less eye strain

special displays

- Random Scan (Directed-beam refresh, vector display)
 - draw the lines to be displayed directly
 - no jaggies
 - lines need to be constantly redrawn
 - rarely used except in special instruments

Direct view storage tube (DVST)

- Similar to random scan but persistent => no flicker
- Can be incrementally updated but not selectively erased
- Used in analogue storage oscilloscopes

physical controls, sensors etc.

special displays and gauges
sound, touch, feel, smell
physical controls
environmental and bio-sensing

dedicated displays

- HUMAN-COMPUTER INTERACTION
- analogue representations:
 - dials, gauges, lights, etc.
- digital displays:
 - small LCD screens, LED lights, etc.
- head-up displays
 - found in aircraft cockpits
 - show most important controls
 - ... depending on context

Sounds

- beeps, bongs, clonks, whistles and whirrs
- · used for error indications
- confirmation of actions e.g. keyclick

also see chapter 10

Touch, feel, smell

HUMAN-COMPUT INTERACTION

- · touch and feeling important
- in games ... vibration, force feedback
- in simulation ... feel of surgical instruments
- called haptic devices
- texture, smell, taste
 - current technology very limited

BMW iDrive

- · for controlling menus
- feel small 'bumps' for each item
- makes it easier to select options by feel
- uses haptic technology from Immersion Corp.

physical controls

- specialist controls needed ...
 - industrial controls, consumer products, etc.

- sensors all around us
 - car courtesy light small switch on door
 - ultrasound detectors security, washbasins
 - RFID security tags in shops
 - temperature, weight, location
- ... and even our own bodies ...
 - iris scanners, body temperature, heart rate, galvanic skin response, blink rate

Readability of text

HUMAN-COMPUTE INTERACTION

- lowercase
 - easy to read shape of words
- UPPERCASE
 - better for individual letters and non-words
 e.g. flight numbers: BA793 vs. ba793
- · serif fonts
 - helps your eye on long lines of printed text
 - but sans serif often better on screen

Page Description Languages

- · Pages very complex
 - different fonts, bitmaps, lines, digitised photos, etc.
- Can convert it all into a bitmap and send to the printer ... but often huge!
- · Alternatively Use a page description language
 - sends a description of the page can be sent,
 - instructions for curves, lines, text in different styles, etc.
 - like a programming language for printing!
- · PostScript is the most common

Screen and page

- WYSIWYG
 - what you see is what you getaim of word processing, etc.
- but
 - screen: 72 dpi, landscape image
 - print: 600+ dpi, portrait
- can try to make them similar but never quite the same
- so ... need different designs, graphics etc, for screen and print

MAN-COMPUTER NTERACTION

Scanners

- · Take paper and convert it into a bitmap
- · Two sorts of scanner
 - flat-bed: paper placed on a glass plate, whole page converted into bitmap
 - hand-held: scanner passed over paper, digitising strip typically 3-4" wide
- Shines light at paper and note intensity of reflection
 colour or greyscale
- Typical resolutions from 600–2400 dpi

HUMAN-COMPUTE INTERACTION

Scanners (ctd)

Used in

- desktop publishing for incorporating photographs and other images
- document storage and retrieval systems, doing away with paper storage
- special scanners for slides and photographic negatives

Optical character recognition

- · OCR converts bitmap back into text
- · different fonts
 - create problems for simple "template matching" algorithms
 - more complex systems segment text, decompose it into lines and arcs, and decipher characters that way
- · page format
 - columns, pictures, headers and footers

short term and long term speed, capacity, compression formats, access

memory

Short-term Memory - RAM

- · Random access memory (RAM)
 - on silicon chips
 - 100 nano-second access time
 - usually volatile (lose information if power turned off)
 - data transferred at around 100 Mbytes/sec
- Some non-volatile RAM used to store basic set-up information
- Typical desktop computers: 64 to 256 Mbytes RAM

Long-term Memory - disks

- · magnetic disks
 - floppy disks store around 1.4 Mbytes
 - hard disks typically 40 Gbytes to 100s of Gbytes access time ~10ms, transfer rate 100kbytes/s
- · optical disks
 - use lasers to read and sometimes write
 - more robust that magnetic media

 - CD-ROM
 same technology as home audio, ~ 600 Gbytes
 - DVD for AV applications, or very large files

Blurring boundaries

- PDAs
 - often use RAM for their main memory
- Flash-Memory
 - used in PDAs, cameras etc.
 - silicon based but persistent
 - plug-in USB devices for data transfer

speed and capacity

- · what do the numbers mean?
- some sizes (all uncompressed) ..
 - this book, text only ~ 320,000 words, 2Mb
 - the Bible ~ 4.5 Mbytes
 - scanned page ~ 128 Mbytes
 - (11x8 inches, 1200 dpi, 8bit greyscale)
 - digital photo ~ 10 Mbytes
 - (2–4 mega pixels, 24 bit colour) video ~ 10 Mbytes *per second*

 - (512x512, 12 bit colour, 25 frames per sec)

Storage formats - text ASCII - 7-bit binary code for to each letter and character UTF-8 - 8-bit encoding of 16 bit character set RTF (rich text format) - text plus formatting and layout information SGML (standardized generalised markup language) - documents regarded as structured objects XML (extended markup language) - simpler version of SGML for web applications

Finite processing speed

- Designers tend to assume fast processors, and make interfaces more and more complicated
- But problems occur, because processing cannot keep up with all the tasks it needs to do
 - cursor overshooting because system has buffered keypresses
 - icon wars user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- Also problems if system is too fast e.g. help screens may scroll through text much too rapidly to be read

Moore's law

- 1965 ..
 - Gordon Moore, co-founder of Intel, noticed a pattern
 - processor speed doubles every 18 monthsPC ... 1987: 1.5 Mhz, 2002: 1.5 GHz
- · similar pattern for memory

 - but doubles every 12 months!!hard disk ... 1991: 20Mbyte : 2002: 30 Gbyte
- · baby born today
 - record all sound and vision
 - by 70 all life's memories stored in a grain of dust!

/e3/online/moores-law/

the myth of the infinitely fast machine

- implicit assumption ... no delays an infinitely fast machine
- · what is good design for real machines?
- good example ... the telephone :
 - type keys too fast
 - hear tones as numbers sent down the line
 - actually an accident of implementation
 - emulate in deisgn

Limitations on interactive performance

HUMAN-COMPUTER INTERACTION

Computation bound

- Computation takes ages, causing frustration for the user Storage channel bound
- Bottleneck in transference of data from disk to memory Graphics bound
 - Common bottleneck: updating displays requires a lot of effort sometimes helped by adding a graphics co-processor optimised to take on the burden

Network capacity

Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed

Networked computing

Networks allow access to ...

- large memory and processing
- other people (groupware, email)
- shared resources esp. the web

Issues

- network delays slow feedback
- conflicts many people update data
- unpredictability

- history ...
 - 1969: DARPANET US DoD, 4 sites
 - 1971: 23; 1984: 1000; 1989: 10000
- · common language (protocols):
 - TCP Transmission Control protocol
 - · lower level, packets (like letters) between machines - IP - Internet Protocol
 - reliable channel (like phone call) between programs on machines
 - email, HTTP, all build on top of these