

HUMAN-COMPUTE

HUMAN-COMPUTE

ubiquitous computing and augmented realities

- ubiquitous computing

 filling the real world with computers
- virtual and augmented reality
 making the real world in a computer!

Challenging HCI Assumptions

• What do we imagine when we think of a computer?

"The most profound technologies are those that disappear." Weiser

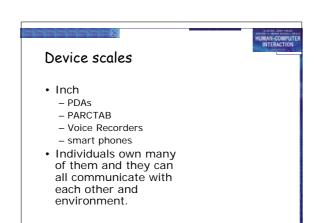
1990's: this was not our imagined computer!

Ubiquitous Computing

6

 Any computing technology that permits human interaction away from a single workstation

HUMAN-COMPUTE


HUMAN-COMPUTE

• Implications for

- Technology defining the interactive experience
- Applications or uses
- Underlying theories of interaction

Scales of devices

- Weiser proposed
 - Inch
 - Foot – Yard
- Implications for device size as well as
 - relationship to people

Device scales

6

Foot

- notebooks
- tablets
- digital paper
 Individual owns several but not assumed to be always with them.

HUMAN-COMPUTE

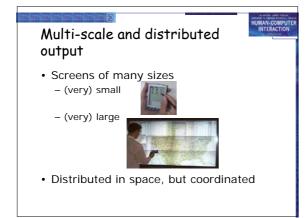
Device scales

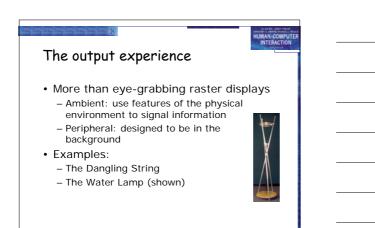
share them.

- Yard
 - electronic whiteboards
 plasma displays
 smart bulletin boards
- Buildings or institutions own them and lots of people


HUMAN-COMPUTE

HUMAN-COMPUTE


Defining the Interaction Experience


- Implicit input
 - Sensor-based input
 - Extends traditional explicit input (e.g.,
 - keyboard and mouse)
 - Towards "awareness"
 - Use of recognition technologies
 - Introduces ambiguity because recognizers are not perfect

3

HUMAN-COMPUTER Merging Physical and Digital Worlds

- How can we remove the barrier? - Actions on physical
 - objects have meaning
 - electronically, and vice versa Output from electronic world
 - superimposed on physical world

HUMAN-COMPUTE

HUMAN-COMPUTE

Application Themes

- Context-aware computing - Sensed phenomena facilitate easier interaction
- Automated capture and access - Live experiences stored for future access
- Toward continuous interaction - Everyday activities have no clear begin-end conditions

New Opportunities for Theory

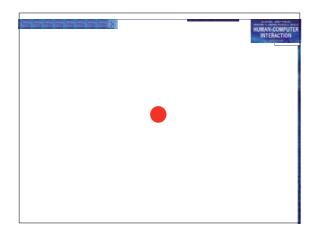
- Knowledge in the world
- Ubicomp places more emphasis on the physical world
- Activity theory

 Goals and actions fluidly adjust to physical state of world
- Situated action and distributed cognition Emphasizes improvisational/opportunistic behavior versus planned actions
- Ethnography
 - Deep descriptive understanding of activities in context

Evaluation Challenges

• How can we adapt other HCI techiques to apply to ubicomp settings?

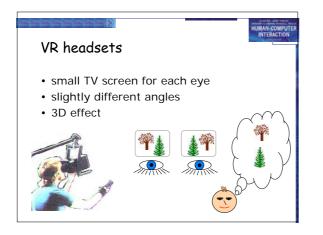
HUMAN-COMPUTE


- Ubicomp activities not so task-centric
- Technologies are so new, it is often hard to get long-term authentic summative evaluation
- Metric of success could be very different (playfulness, non-distraction versus efficiency)



- shows invisible things
 uses RFID
- triggered sound

virtual and augmented reality


HUMAN-COMPUTE

HUMAN-COMPUTE

VR - technology & experience web, desktop and simulators AR – mixing virtual and real

virtual reality technology

- · headsets allow user to "see" the virtual world
- gesture recognition achieved with DataGlove (lycra glove with optical sensors that measure hand and finger positions)
- eyegaze allows users to indicate direction with eyes alone
- · whole body position sensed, walking etc.

immersion

• VR

computer simulation of the real worldmainly visual, but sound, haptic, gesture too

HUMAN-COMPUTE

HUMAN-COMPUTER

- experience life-like situations
- too dangerous, too expensive
- see unseen things:
 - too small, too large, hidden, invisible
 – e.g. manipulating molecules

• the experience

- aim is immersion, engagement, interaction

on the desktop


- headset VR
- expensive, uncomfortbaledesktop VR
 - use ordinary monitor and PC
 cheap and convenient
- in games ...
- · and on the web
 - VRML virtual reality markup language

- 63 HUMAN-COMPUTER VRML ... VR on the web #VRML V1.0 ascii } Sphere { radius 1 } } pure { large 1 } } Transform { translation 4 2 0 } Separator { # for cone Texture2 { filename *big_alan.jpg* } Cone { radius 1 # N.B. width=2*radius height 3 } }

HUMAN-COMPUTE command and control · scenes projected on walls · realistic environment • hydraulic rams! real controls · other people • for:

flight simulators
ships
military

- 61

HUMAN-COMPUTER

augmented reality (AR)

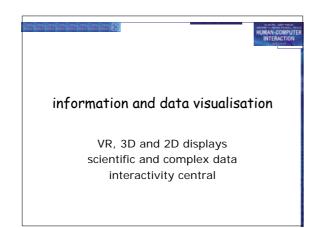
- · images projected over the real world aircraft head-up display
 - semi-transparent goggles
 - projecting onto a desktop
- types of information
- unrelated e.g. reading email with wearable - related - e.g. virtual objects interacting with world
- issues - registration - aligning virtual and real - eye gaze direction

applications of AR

maintenance

- overlay instructions
- display schematics

examples

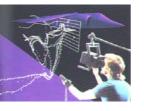

- photocopier engineers
 - registration critical arrows point to parts
- aircraft wiring looms
 - · registration perhaps too hard, use schematic

HUMAN-COMPUTER

HUMAN-COMPUTE

applications of VR

- simulation – games, military, training
- VR holidays
 - rainforest, safari, surf, ski and moon walk
 ... all from your own armchair
- medical
 - surgery
 - scans and x-rays used to build model then 'practice' operation
 force feedback best
 - phobia treatment
 - · virtual lifts, spiders, etc.

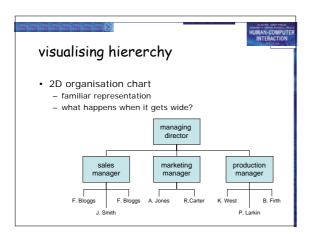


scientific and technical data

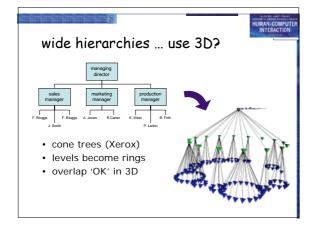
- number of virtual dimensions that are 'real'three dimensional space
 - visualise invisible fields or valuese.g. virtual wind tunnel
- two dimensional space
 - can project data value up from plane
 - e.g. geographic data– N.B. viewing angle hard for static visualisation
- no 'real' dimensions
 - 2D/3D histograms, scatter plots, pie charts, etc.

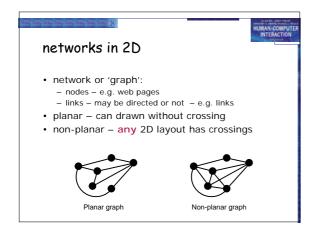
virtual wind tunnel

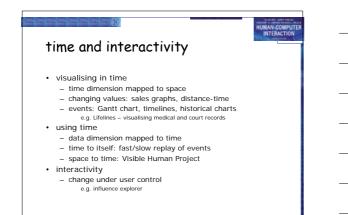
- · fluid dynamics to simulate air flow
- · virtual bubbles used to show movements
- 'better' than real wind tunnel ...
 no disruption of air flow
 - cheaper and faster

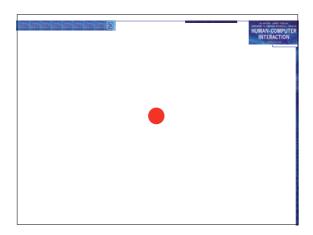

HUMAN-COMPUTINTERACTION

HUMAN-COMPUTE


structured informnation


- scientific data just numbers
- · information systems ... lots of kinds of data
- hierarchies
 - file trees, organisation charts
- networks
- program flow charts, hypertext structure
- free text ...
 - documents, web pages


HUMAN-COMPUTE



between two worlds

- ubiquitous computing

 computers fill the real world
- virtual reality and visualisation
 real world represented in the computer
- augmented reality, ambient displays ...
 physical and digital intermingled
- ... maturity
 - VR and visualisation commonplace
 AR, ubiquity ... coming fast!

HUMAN-COMPUTER