
1

chapter 17

models of the system

Models of the System

 Standard Formalisms
 software engineering notations used to specify the

required behaviour of specific interactive systems

 Interaction Models
 special purpose mathematical models of interactive

systems used to describe usability properties at a
generic level

 Continuous Behaviour
 activity between the events, objects with continuous

motion, models of time

types of system model

• dialogue – main modes

• full state definition

• abstract interaction model

specific
system

generic
issues

Relationship with dialogue

• Dialogue modelling is linked to semantics

• System semantics affects the dialogue
structure

• But the bias is different

• Rather than dictate what actions are legal,
these formalisms tell what each action does to
the system.

Irony

• Computers are inherently mathematical
machines

• Humans are not

• Formal techniques are well accepted for
cognitive models of the user and the dialogue
(what the user should do)

• Formal techniques are not yet well accepted
for dictating what the system should do for the
user!

standard formalisms

general computing notations

to specify a particular system

2

standard formalisms

 Standard software engineering formalisms can be used
to specify an interactive system.

 Referred to as formal methods

• Model based – describe system states and operations

– Z, VDM

• Algebraic – describe effects of sequences of actions

– OBJ, Larch, ACT-ONE

• Extended logics – describe when things happen and who
is responsible

– temporal and deontic logics

Uses of SE formal notations

• For communication
– common language

– remove ambiguity (possibly)

– succinct and precise

• For analysis
– internal consistency

– external consistency

• with eventual program

• with respect to requirements (safety, security, HCI)

– specific versus generic

model-based methods

• use general mathematics:
– numbers, sets, functions

• use them to define
– state

– operations on state

model-based methods

• describe state using variables

• types of variables:
– basic type:

x: Nat – non-negative integer {0,1,2,...}

 or in the Z font:

– individual item from set:
shape_type: {line, ellipse, rectangle}

– subset of bigger set:
selection: set Nat – set of integers

 or in the Z font:

– function (often finite):
objects: Nat Shape_Type

Mathematics and programs

 Mathematical counterparts to common programming
constructs

 Programming Mathematics

 types sets

 basic types basic sets

 constructed types constructed sets

 records unordered tuples

 lists sequences

 functions functions

 procedures relations

running example …

 a simple graphics drawing package

 supports several types of shape

3

define your own types

 an x,y location is defined by two numbers

 a graphic object is defined by its shape, size, and centre

Point == Nat Nat

shape: {line, ellipse, rectangle}

x, y: Point – position of centre

wid: Nat

ht: Nat – size of shape

Shape ==

… yet another type definition

A collection of graphic objects can be identified
by a ‘lookup dictionary’

 [Id]
 Shape_Dict == Id Shape

• Id is an introduced set
– some sort of unique identifier for each object

• Shap_Dict is a function
– for any Id within its domain (the valid shapes) it

gives you a corresponding shapthis means for any

use them to define state

shapes: Shape_Dict
selection: set Id – selected objects

invariants and initial state

selection dom shapes
– selection must consist of valid objects

invariants – conditions that are always be true
– must be preserved by every operation

dom shapes = {} – no objects

selection = {} – selection is empty

initial state – how the system starts!

Defining operations

 State change is represented as two copies of the state

 before – State

 after – State’

 The Unselect operation deselects any selected objects

selection' = {} – new selection is empty

shapes' = shapes – but nothing else changes

unselect:

… another operation

dom shapes' = dom shapes – selection
– remove selected objects

 id dom shapes'
 shapes' (id) = shapes(id)

– remaining objects unchanged

selection' = {} – new selection is empty

delete:

 note again use of primed variables for ‘new’ state

4

display/presentation

• details usually very complex (pixels etc.)

… but can define what is visible

Shape_Type

highlight: Bool

Visible_Shape_Type =

display:

vis_objects: set Visible_Shape_Type

vis_objects =

 { (objects(id), sel(id)) | id dom objects }

 where sel(id) = id selection

Interface issues

• Framing problem
– everything else stays the same

– can be complicated with state invariants

• Internal consistency
– do operations define any legal transition?

• External consistency
– must be formulated as theorems to prove

– clear for refinement, not so for requirements

• Separation
– distinction between system functionality and presentation

is not explicit

Algebraic notations

• Model based notations
– emphasise constructing an explicit representations of the

system state.

• Algebraic notations
– provide only implicit information about the system state.

• Model based operations
– defined in terms of their effect on system components.

• Algebraic operations
– defined in terms of their relationship with the other

operations.

Return to graphics example

 types

 State, Pt

 operations

 init : State

 make ellipse : Pt State State

 move : Pt State State

 unselect : State State

 delete : State State

 axioms
 for all st State, p Pt •

 1. delete(make ellipse(st)) = unselect(st)

 2. unselect(unselect(st)) = unselect(st)

 3. move(p; unselect(st)) = unselect(st)

Issues for algebraic notations

• Ease of use

– a different way of thinking than traditional programming

• Internal consistency

– are there any axioms which contradict others?

• External consistency

– with respect to executable system less clear

• External consistency

– with respect to requirements is made explicit and
automation possible

• Completeness

– is every operation completely defined?

Extended logics

• Model based and algebraic notations make extended
use of propositional and predicate logic.

• Propositions
– expressions made up of

atomic terms: p, q, r, …

– composed with
logical operations: ¬ …

• Predicates
– propositions with variables, e.g., p(x)
– and quantified expressions:

• Not convenient for expressing time, responsibility and
freedom, notions sometimes needed for HCI
requirements.

5

Temporal logics

 Time considered as succession of events

 Basic operators:
 – always (G funnier than A)

 – eventually (G understands A)

 – never (rains in So. Cal.)

 Other bounded operators:
 p until q – weaker than

 p before q – stronger than

¬ ¬

Explicit time

• These temporal logics do not explicitly
mention time, so some requirements cannot
be expressed

• Active research area, but not so much with
HCI

• Gradual degradation more important than
time-criticality

• Myth of the infinitely fast machine …

Deontic logics

 For expressing responsibility, obligation between agents
(e.g., the human, the organisation, the computer)

 permission per

 obligation obl

 For example:

 owns(Jane’ file `fred'))

 per(Jane, request(‘print fred’))

 performs(Jane, request(‘print fred’)))

 obl(lp3, print(file ‘fred’))

Issues for extended logics

• Safety properties
– stipulating that bad things do not happen

• Liveness properties
– stipulating that good things do happen

• Executability versus expressiveness
– easy to specify impossible situations

– difficult to express executable requirements

– settle for eventual executable

• Group issues and deontics
– obligations for single-user systems have personal impact

– for groupware … consider implications for other users.

interaction models

PIE model

defining properties

undo

Interaction models

 General computational models were not designed with the
user in mind

 We need models that sit between the software engineering
formalism and our understanding of HCI

• formal
– the PIE model for expressing general interactive properties to

support usability

• informal
– interactive architectures (MVC, PAC, ALV) to motivate separation

and modularisation of functionality and presentation (chap 8)

• semi-formal
– status-event analysis for viewing a slice of an interactive system

that spans several layers (chap 18)

6

the PIE model

‘minimal’ black-box model of interactive system

focused on external observable aspects of
interaction

P
I

E

R

D

result

disp

PIE model – user input

• sequence of commands

• commands include:
– keyboard, mouse movement, mouse click

• call the set of commands C

• call the sequence P
P = seq C

PIE model – system response

• the ‘effect’

• effect composed of:
ephemeral display
the final result
• (e..g printout, changed file)

• call the set of effects E

PIE model – the connection

• given any history of commands (P)

• there is some current effect

• call the mapping the interpretation (I)
I: P E

P
I

E

R

D

result

disp

More formally

 [C;E;D;R]

 P == seq C

 I : P E

 display : E D

 result : E R

 Alternatively, we can derive a state transition function from
the PIE.

 doit : E P E

 doit(I(p), q) = I(p q)

 doit(doit(e, p). q) = doit(e, p q)

Expressing properties

 WYSIWYG (what you see is what you get)

– What does this really mean, and how can we test product
X to see if it satisfies a claim that it is WYSIWYG?

 Limited scope general properties which support
WYSIWYG

• Observability

– what you can tell about the current state of the system
from the display

• Predictability

– what you can tell about the future behaviour

7

Observability & predictability

 Two possible interpretations of WYSIWYG:

 What you see is what you:

 will get at the printer

 have got in the system

 Predictability is a special case of observability

what you get at the printer

predict (D R) s.t. predict o display = result

• but really not quite the full meaning

P
I

E

R

D

predict

result

display

stronger – what is in the state

predictE (D R) s.t. predictE o display = idE

• but too strong – only allows trivial systems where everything
is always visible

P
I

E

R

D

predict

result

display

E

identity
on E

Relaxing the property

• O – the things you can indirectly observe in the system
through scrolling etc.

• predict the result

 f (O R) s.t. f o observe = result

• or the effect
 g (O R) s.t. g o observe = idE

P E

R

O D

I
result

observe
g

f

Reachability and undo

• Reachability – getting from one state to another.

 e, e’ E • p P • doit(e, p) = e’

• Too weak

• Undo – reachability applied between current state and
last state.

 c C • doit(e, c undo) = e

• Impossible except for very simple system with at most
two states!

• Better models of undo treat it as a special command to
avoid this problem

proving things – undo

 c : c undo ~ null ?

only for c undo

Sa

S0

Sb

S0

a

b

undo

undo

undo Sa Sb=

8

lesson

• undo is no ordinary command!

• other meta-commands:

back/forward in browsers

history window

Issues for PIE properties

• Insufficient
– define necessary but not sufficient properties for usability.

• Generic
– can be applied to any system

• Proof obligations
– for system defined in SE formalism

• Scale
– how to prove many properties of a large system

• Scope
– limiting applicability of certain properties

• Insight
– gained from abstraction is reusable

continuous behaviour

mouse movement

status–event & hybrid models

granularity and gestalt

dealing with the mouse

• Mouse always has a location
– not just a sequence of events

– a status value

• update depends on current mouse location
– doit: E C M E

– captures trajectory independent behaviour

• also display depends on mouse location
– display: E M D

– e.g.dragging window

formal aspects of status–event

• events
– at specific moments of time

• keystrokes, beeps,
stroke of midnight in Cinderella

• status

– values of a period of time
• current computer display, location of mouse,

internal state of computer, the weather

interstitial behaviour

• discrete models
– what happens at events

• status–event analysis
– also what happens between events

• centrality …
– in GUI – the feel

• dragging, scrolling, etc.

– in rich media – the main purpose

9

formalised …

action:
user-event x input-status x state

-> response-event x (new) state

interstitial behaviour:
user-event x input-status x state

-> response-event x (new) state

 note:
current input-status => trajectory independent
history of input-status allows freehand drawing etc.

current /
history of

status–change events

• events can change status

• some changes of status are events
 when bank balance < $100

need to do more work!

• not all changes!
– every second is a change in time

– but only some times critical

 when time = 12:30 – eat lunch

• implementation issues
– system design – sensors, polling behaviour

meaningful events

more on status-event analysis in chapter 18

making everything continuous

• physics & engineering
– everything is continuous

• time, location, velocity, acceleration, force, mass

• can model everything as pure continuous
 statet = (t, t0, statet0, inputs during [t0,t))

 outputt = (statet)

– like interstitial behaviour

• but clumsy for events – in practice need both

x = vt –1/2gt2= v
dx

dt = –g
dv

dt

hybrid models

• computing “hybrid systems” models
• physical world as differential equations

• computer systems as discrete events

– for industrial control, fly-by-wire aircraft

• adopted by some
– e.g. TACIT project

Hybrid Petri Nets and
continuous interactors

status–status
mappings

continuous
input

discrete
input

threshold

continuous
output

discrete
output

object
state

enable/disable

discrete
computation

status–change
events

depend on
discrete state

common features

• actions
– at events, discrete changes in state

• interstitial behaviour
– between events, continuous change

granularity and Gestalt

• granularity issues
– do it today

» next 24 hours, before 5pm, before midnight?

• two timing
– ‘infinitely’ fast times

» computer calculation c.f. interaction time

• temporal gestalt
– words, gestures

» where do they start, the whole matters

