chapter 15

task models

What is Task Analysis?

Methods to analyse people's jobs:
- what people do
- what things they work with
- what they must know

An Example

• in order to clean the house
 • get the vacuum cleaner out
 • fix the appropriate attachments
 • clean the rooms
 • when the dust bag gets full, empty it
 • put the vacuum cleaner and tools away

• must know about:
 • vacuum cleaners, their attachments, dust bags, cupboards, rooms etc.

Approaches to task analysis

• Task decomposition
 - splitting task into (ordered) subtasks
• Knowledge based techniques
 - what the user knows about the task and how it is organised
• Entity/object based analysis
 - relationships between objects, actions and the people who perform them
• lots of different notations/techniques

general method

• observe

• collect unstructured lists of words and actions

• organize using notation or diagrams

Differences from other techniques

<table>
<thead>
<tr>
<th>Systems analysis</th>
<th>vs.</th>
<th>Task analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>system design</td>
<td>focus</td>
<td>the user</td>
</tr>
<tr>
<td>Cognitive models</td>
<td>vs.</td>
<td>Task analysis</td>
</tr>
<tr>
<td>internal mental state</td>
<td>focus</td>
<td>external actions</td>
</tr>
<tr>
<td>practiced "unit" task</td>
<td>focus</td>
<td>whole job</td>
</tr>
</tbody>
</table>
Task Decomposition

Aims:
- describe the actions people do
- structure them within task/subtask hierarchy
- describe order of subtasks

Variants:
- Hierarchical Task Analysis (HTA)
 - most common
- CTT (CNUCE, Pisa)
 - uses LOTOS temporal operators

Textual HTA description

Hierarchy description ...
0. In order to clean the house
 1. get the vacuum cleaner out
 2. get the appropriate attachment
 3. clean the rooms
 3.1. clean the hall
 3.2. clean the living rooms
 3.3. clean the bedrooms
 4. empty the dust bag
 5. put vacuum cleaner and attachments away

... and plans
Plan 0: do 1 - 2 - 3 - 5 in that order, when the dust bag gets full do 4
Plan 3: do any of 3.1, 3.2 or 3.3 in any order depending on which rooms need cleaning

N.B. only the plans denote order

Generating the hierarchy

1. get list of tasks
2. group tasks into higher level tasks
3. decompose lowest level tasks further

Stopping rules
- How do we know when to stop?
- Is "empty the dust bag" simple enough?
- Purpose: expand only relevant tasks
- Motor actions: lowest sensible level

Tasks as explanation

- imagine asking the user the question:
 - what are you doing now?
- for the same action the answer may be:
 - typing ctrl-B
 - making a word bold
 - emphasising a word
 - editing a document
 - writing a letter
 - preparing a legal case

HTA as grammar

- can parse sentence into letters, nouns, noun phrase, etc.

```
  noun phrase  
  det noun
  letter

  syntax

  lexical

  The cat sat on the mat.
```

Parse scenario using HTA

- get out cleaner
- fix carpet head
- clean dining room
- empty dustbag
- clean sitting room
- put cleaner away

0. In order to clean the house
 1. get the vacuum cleaner out
 2. get the appropriate attachment
 3. clean the rooms
 3.1. clean the hall
 3.2. clean the living rooms
 3.3. clean the bedrooms
 4. empty the dust bag
 5. put vacuum cleaner and attachments away
Refining the description
Given initial HTA (textual or diagram)
How to check / improve it?
Some heuristics:
- paired actions e.g., where is “turn on gas”
- restructure e.g., generate task “make pot”
- balance e.g., is “pour tea” simpler than making pot?
- generalise e.g., make one cup …., or more

Types of plan
- fixed sequence 1.1 then 1.2 then 1.3
- optional tasks if the pot is full 2
- wait for events when kettle boils 1.4
- cycles do 5.1 5.2 while there are still empty cups
- time-sharing do 1; at the same time …
- discretionary do any of 3.1, 3.2 or 3.3 in any order
- mixtures most plans involve several of the above

Knowledge Based Analyses
Focus on:
- Objects used in task
- Actions performed
- Taxonomies represent levels of abstraction

Waiting ...
- is waiting part of a plan? … or a task?
- generally
 - task – if ‘busy’ wait
 - plan – if end of delay is the event
 - e.g., “when alarm rings”, “when reply arrives”
- in this example …
 - perhaps a little redundant …
 - TA not an exact science

see chapter 19 for more on delays!
Knowledge-Based Example...

- steering, steering wheel, indicators
- direct: ignition, accelerator, foot brake
- lights: external: headlights, hazard lights
- internal: courtesy light
- wash/wipe: front wipers, rear wipers
- washers: front washers, rear washers
- heating: temperature control, air direction, fan, rear screen heater
- parking: hand brake, door lock
- radio: numerous!

Task Description Hierarchy

Three types of branch point in taxonomy:

- **XOR** – normal taxonomy
 - object in one and only one branch
- **AND** – object must be in both
 - multiple classifications
- **OR** – weakest case
 - can be in one, many or none

Larger TDH example

- kitchen item AND
 /____shape XOR
 / |____dished mixing bowl, casserole, saucepan,
 / |____flat plate, chopping board, frying pan
 /____function OR
 |____preparation mixing bowl, plate, chopping board
 |____cooking frying pan, casserole, saucepan
 |____dining XOR
 |____for food plate, soup bowl, casserole
 |____for drink glass

More on TDH

- Uniqueness rule:
 - can the diagram distinguish all objects?
 - e.g., plate is:
 kitchen item/shape(flat)/function{preparation,dining(for food)}/nothing else fits this description

- Actions have taxonomy too:
 - kitchen job OR
 |____ preparation beating, mixing
 |____ cooking frying, boiling, baking
 |____ dining pouring, eating, drinking

Abstraction and cuts

After producing detailed taxonomy

'cut' to yield abstract view

That is, ignore lower level nodes
- e.g. cutting above shape and below dining, plate becomes:
 kitchen item/function(preparation,dining)/

This is a term in Knowledge Representation Grammar (KRG)

These can be more complex:
- e.g. ‘beating in a mixing bowl’ becomes:
 kitchen job(preparation) using a kitchen item/function(preparation)/

Entity-Relationship Techniques

Focus on objects, actions and their relationships

Similar to OO analysis, but...

- includes non-computer entities
- emphasises domain understanding not implementation

Running example
 “Vera’s Veggies” – a market gardening firm
 owner/manager: Vera Bradshaw
 employees: Sam Gummage and Tony Peagreen
 various tools including a tractor ‘Fergie’
 two fields and a glasshouse
 new computer controlled irrigation system
Objects

Start with list of objects and classify them:
Concrete objects:
simple things: spade, plough, glasshouse
Actors:
human actors: Vera, Sam, Tony, the customers
what about the irrigation controller?
Composite objects:
sets: the team = Vera, Sam, Tony
tuples: tractor may be < Fergie, plough >

Attributes

To the objects add attributes:
Object Pump3 simple – irrigation pump
Attributes:
status: on/off/faulty
capacity: 100 litres/minute

N.B. need not be computationally complete

Actions

List actions and associate with each:
agent – who performs the actions
patient – which is changed by the action
instrument – used to perform action
examples:
Sam (agent) planted (action) the leeks (patient)
Tony dug the field with the spade (instrument)

Actions (ctd)

implicit agents – read behind the words
‘the field was ploughed’ – by whom?
indirect agency – the real agent?
‘Vera programmed the controller to irrigate the field’
messages – a special sort of action
‘Vera told Sam to ...’
rôles – an agent acts in several rôle
Vera as worker or as manager

example - objects and actions

Object Sam human actor
Actions:
S1: drive tractor
S2: dig the carrots

Object Vera human actor – the proprietor
Actions: as worker
V1: plant marrow seed
V2: program irrigation controller
Actions: as manager
V3: tell Sam to dig the carrots

Object Men composite
Comprises: Sam, Tony

Object glasshouse simple
Attribute:
humidity: 0-100%

Object Marrow simple
Actions:
M1: germinate
M2: grow

Object Irrigation Controller non-human actor
Actions:
IC1: turn on Pump1
IC2: turn on Pump2
IC3: turn on Pump3

Events

... when something happens
• performance of action
 ‘Sam dug the carrots’
• spontaneous events
 ‘the marrow seed germinated’
 ‘the humidity drops below 25%’
• timed events
 ‘at midnight the controller turns on’
Relationships

- **object-object**
 - social: Sam is subordinate to Vera
 - spatial: pump 3 is in the glasshouse

- **action-object**
 - agent (listed with object)
- **patient and instrument**
 - temporal and causal: "Sam digs the carrots because Vera told him"

- **temporal relations**
 - use HTA or dialogue notations, show task sequence (normal HTA) show object lifecycle

example - events and relations

Events:
- Ev1: humidity drops below 25%
- Ev2: midnight

Relations:
- object-object: (Pump3, glasshouse)
- location (Pump1, Parker’s Patch)
- action-object: (V3, Sam)
 - Vera tells Sam to dig
- (S2, the carrots)
 - Sam digs the carrots — with the spade
- instrument (S2, spade)
 - ...

Sources of Information

Documentation
- N.B. manuals say what is supposed to happen
- but, good for key words and prompting interviews

Observation
- formal/informal, laboratory/field (see Chapter 9)

Interviews
- the expert: manager or worker? (ask both!)

Early analysis

Extraction from transcripts
- list nouns (objects) and verbs (actions)
- beware technical language and context: ‘the rain poured’ vs. ‘I poured the tea’

Sorting and classifying
- grouping or arranging words on cards
- ranking objects/actions for task relevance (see ch. 9)
- use commercial outliner

Iterative process:
- data sources -- analysis
- but costly, so use cheap sources where available

Uses - manuals & documentation

Conceptual Manual
- from knowledge or entity–relations based analysis
- good for open ended tasks

Procedural ‘How to do it’ Manual
- from HTA description
- good for novices
- assumes all tasks known

Uses - requirements & design

Requirements capture and systems design
- lifts focus from system to use
- suggests candidates for automation
- uncovers user’s conceptual model

Detailed interface design
- taxonomies suggest menu layout
- object/action lists suggest interface objects
- task frequency guides default choices
- existing task sequences guide dialogue design

NOTE. task analysis is never complete
- rigid task based design — inflexible system