
1

chapter 8

implementation support

Implementation support

• programming tools
– levels of services for programmers

• windowing systems
– core support for separate and simultaneous user-

system activity

• programming the application and control of
dialogue

• interaction toolkits
– bring programming closer to level of user perception

• user interface management systems
– controls relationship between presentation and

functionality

Introduction

How does HCI affect of the programmer?

Advances in coding have elevated programming
hardware specific

 interaction-technique specific

Layers of development tools
– windowing systems

– interaction toolkits

– user interface management systems

2

Elements of windowing systems

Device independence
programming the abstract terminal device drivers

image models for output and (partially) input
• pixels

• PostScript (MacOS X, NextStep)

• Graphical Kernel System (GKS)

• Programmers' Hierarchical Interface to Graphics
(PHIGS)

Resource sharing
achieving simultaneity of user tasks

window system supports independent processes

isolation of individual applications

roles of a windowing system

Architectures of windowing
systems

three possible software architectures

– all assume device driver is separate

– differ in how multiple application management is
implemented

1. each application manages all processes

– everyone worries about synchronization

– reduces portability of applications

2. management role within kernel of operating system

– applications tied to operating system

3. management role as separate application
maximum portability

3

The client-server architecture

X Windows architecture

X Windows architecture (ctd)

• pixel imaging model with some pointing
mechanism

• X protocol defines server-client communication

• separate window manager client enforces
policies for input/output:

– how to change input focus

– tiled vs. overlapping windows

– inter-client data transfer

4

Programming the application - 1

read-evaluation loop

repeat

read-event(myevent)

case myevent.type

type_1:

do type_1 processing

type_2:

do type_2 processing

...

type_n:

do type_n processing

end case

end repeat

Programming the application - 1

notification-based
void main(String[] args) {

Menu menu = new Menu();

menu.setOption(“Save”);

menu.setOption(“Quit”);

menu.setAction(“Save”,mySave)

menu.setAction(“Quit”,myQuit)

...

}

int mySave(Event e) {

// save the current file

}

int myQuit(Event e) {

// close down

}

going with the grain

• system style affects the interfaces

– modal dialogue box
• easy with event-loop (just have extra read-event loop)

• hard with notification (need lots of mode flags)

– non-modal dialogue box
• hard with event-loop (very complicated main loop)

• easy with notification (just add extra handler)

beware!

if you don’t explicitly design it will just happen
implementation should not drive design

5

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction

– programming with interaction objects (or

– techniques, widgets, gadgets)

– promote consistency and generalizability

– through similar look and feel

– amenable to object-oriented programming

move press release move

interfaces in Java

• Java toolkit – AWT (abstract windowing toolkit)

• Java classes for buttons, menus, etc.

• Notification based;

– AWT 1.0 – need to subclass basic widgets

– AWT 1.1 and beyond -– callback objects

• Swing toolkit

– built on top of AWT – higher level features

– uses MVC architecture (see later)

User Interface Management
Systems (UIMS)

• UIMS add another level above toolkits
– toolkits too difficult for non-programmers

• concerns of UIMS
– conceptual architecture

– implementation techniques

– support infrastructure

• non-UIMS terms:
– UI development system (UIDS)

– UI development environment (UIDE)

• e.g. Visual Basic

6

UIMS as conceptual architecture

• separation between application semantics and
presentation

• improves:

– portability – runs on different systems

– reusability – components reused cutting costs

– multiple interfaces – accessing same functionality

– customizability – by designer and user

UIMS tradition – interface
layers / logical components

• linguistic: lexical/syntactic/semantic

• Seeheim:

• Arch/Slinky

presentation dialogue application

dialogue

lexical

physical
functional

core

func. core
adaptor

Seeheim model

Presentation
Dialogue

Control

Functionality
(application

interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

7

conceptual vs. implementation

Seeheim

– arose out of implementation experience

– but principal contribution is conceptual

– concepts part of ‘normal’ UI language

 … because of Seeheim …
… we think differently!

e.g. the lower box, the switch

• needed for implementation

• but not conceptual
presentation dialogue application

semantic feedback

• different kinds of feedback:

– lexical – movement of mouse

– syntactic – menu highlights

– semantic – sum of numbers changes

• semantic feedback often slower

– use rapid lexical/syntactic feedback

• but may need rapid semantic feedback

– freehand drawing

– highlight trash can or folder when file dragged

what’s this?

8

the bypass/switch

rapid semantic
feedback

direct communication
between application

and presentation

but regulated by

dialogue control

more layers!

dialogue

lexical

physical
functional

core

func. core
adaptor

Arch/Slinky

• more layers! – distinguishes lexical/physical

• like a ‘slinky’ spring different layers may be

thicker (more important) in different systems

• or in different components

dialogue

lexical

physical
functional

core

func. core
adaptor

9

monolithic vs. components

• Seeheim has big components

• often easier to use smaller ones

– esp. if using object-oriented toolkits

• Smalltalk used MVC – model–view–controller

– model – internal logical state of component

– view – how it is rendered on screen

– controller – processes user input

MVC
model - view - controller

model

view

controller

MVC issues

• MVC is largely pipeline model:
 input control model view output

• but in graphical interface

– input only has meaning in relation to output

 e.g. mouse click

– need to know what was clicked

– controller has to decide what to do with click

– but view knows what is shown where!

• in practice controller ‘talks’ to view

– separation not complete

10

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component

– presentation – manages input and output

– control – mediates between them

• manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice
 (e.g. Java Swing)

PAC
presentation - abstraction - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C

Implementation of UIMS

• Techniques for dialogue controller
• menu networks • state transition diagrams

• grammar notations • event languages

• declarative languages • constraints

• graphical specification

– for most of these see chapter 16

• N.B. constraints

– instead of what happens say what should be true

– used in groupware as well as single user interfaces

 (ALV - abstraction–link–view)

see chapter 16 for more details on several of these

11

graphical specification

• what it is

– draw components on screen

– set actions with script or links to program

• in use

– with raw programming most popular technique

– e.g. Visual Basic, Dreamweaver, Flash

• local vs. global

– hard to ‘see’ the paths through system

– focus on what can be seen on one screen

The drift of dialogue control

• internal control
(e.g., read-evaluation loop)

• external control
(independent of application semantics or presentation)

• presentation control
(e.g., graphical specification)

Summary

Levels of programming support tools

• Windowing systems
– device independence

– multiple tasks

• Paradigms for programming the application
– read-evaluation loop

– notification-based

• Toolkits
– programming interaction objects

• UIMS
– conceptual architectures for separation

– techniques for expressing dialogue

