


### the human

- Information i/o ...
  visual, auditory, haptic, movement
- Information stored in memory

   sensory, short-term, long-term
- Information processed and applied
   reasoning, problem solving, skill, error
- Emotion influences human capabilities

HUMAN-COMPUTE

HUMAN-COMPUTE

• Each person is different

### Vision

Two stages in vision

- physical reception of stimulus
- processing and interpretation of stimulus

# The Eye - physical reception

HUMAN-COMPUTE

HUMAN-COMPUTE

HUMAN-COMPUTE

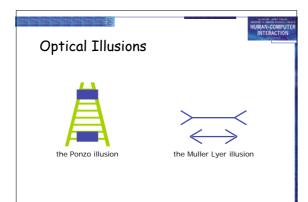
- · mechanism for receiving light and transforming it into electrical energy
- · light reflects from objects
- · images are focused upside-down on retina
- · retina contains rods for low light vision and cones for colour vision
- ganglion cells (brain!) detect pattern and movement

# Interpreting the signal

- · Size and depth
  - visual angle indicates how much of view object occupies (relates to size and distance from eye)
  - visual acuity is ability to perceive detail (limited)
  - familiar objects perceived as constant size (in spite of changes in visual angle when far away)
  - cues like overlapping help perception of size and depth

# Interpreting the signal (cont)

Brightness


- subjective reaction to levels of light
- affected by luminance of object
- measured by just noticeable difference
  visual acuity increases with luminance as does flicker
- Colour
  - made up of hue, intensity, saturation
     cones sensitive to colour wavelengths

  - blue acuity is lowest
  - 8% males and 1% females colour blind



HUMAN-COMPUTE

- The visual system compensates for: – movement
  - changes in luminance.
- Context is used to resolve ambiguity
- Optical illusions sometimes occur due to over compensation





HUMAN-COMPUTE

- Several stages:
  - visual pattern perceived
  - decoded using internal representation of language
     interpreted using knowledge of syntax, semantics, pragmatics
- Reading involves saccades and fixations
- Perception occurs during fixations
- Word shape is important to recognition
- Negative contrast improves reading from computer screen

| Hearing                                                                    | HUMAN-COMPUTER<br>INTERACTION                                                                                                                                    |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>e Physical app<br/>– outer ear<br/>– middle ear</li> </ul>        | <ul> <li>protects inner and amplifies sound</li> <li>transmits sound waves as<br/>vibrations to inner ear</li> <li>chemical transmitters are released</li> </ul> |
| <ul> <li>Sound</li> <li>pitch</li> <li>loudness</li> <li>timbre</li> </ul> | and cause impulses in auditory nerve <ul> <li>sound frequency</li> <li>amplitude</li> <li>type or quality</li> </ul>                                             |

HUMAN-COMPUTE

HUMAN-COMPUTER

# Hearing (cont)

6

- Humans can hear frequencies from 20Hz to 15kHz
  - less accurate distinguishing high frequencies than low.
- Auditory system filters sounds - can attend to sounds over background noise. - for example, the cocktail party phenomenon.

# Touch

- Provides important feedback about environment.
- May be key sense for someone who is visually impaired.
- · Stimulus received via receptors in the skin:
  - thermoreceptors heat and cold
     nociceptors pain

  - mechanoreceptors pressure (some instant, some continuous)
- Some areas more sensitive than others e.g. fingers.
- Kinethesis awareness of body position
- affects comfort and performance.

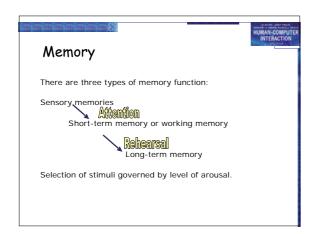
#### Movement

HUMAN-COMPUT

HUMAN-COMPUTE

- Time taken to respond to stimulus: reaction time + movement time
- Movement time dependent on age, fitness etc.
- Reaction time dependent on stimulus type:
  - visual ~ 200ms
    auditory ~ 150 ms
    pain ~ 700ms

  - pain
- Increasing reaction time decreases accuracy in the unskilled operator but not in the skilled operator.


# Movement (cont)

6

· Fitts' Law describes the time taken to hit a screen target:

 $Mt = a + b \log_2(D/S + 1)$ 

- where: a and b are empirically determined constants Mt is movement time D is Distance S is Size of target
- ⇒ targets as large as possible distances as small as possible



### sensory memory

the Call of the Call of the

Buffers for stimuli received through senses

HUMAN-COMPUT

HUMAN-COMPUTE

HUMAN-COMPUTE

- iconic memory: visual stimuli
- echoic memory: aural stimuli
- haptic memory: tactile stimuli
- Examples
  - "sparkler" trail
  - stereo sound
- Continuously overwritten

# Short-term memory (STM)

- Scratch-pad for temporary recall
  - rapid access ~ 70ms
  - rapid decay ~ 200ms
  - limited capacity  $7\pm$  2 chunks

# Examples

212348278493202

0121 414 2626

HEC ATR ANU PTH ETR EET

# Long-term memory (LTM)

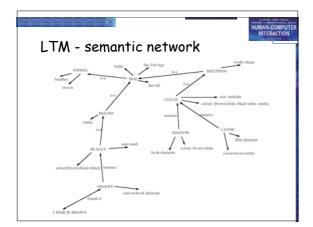
- Repository for all our knowledge
  - slow access ~ 1/10 second

- 61

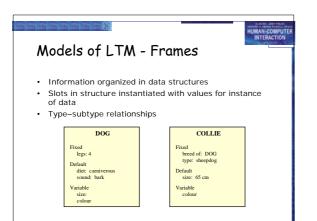
- slow decay, if any
- huge or unlimited capacity

#### Two types

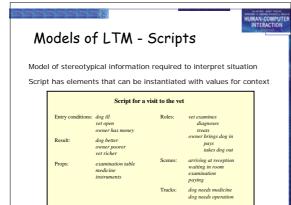
- episodic serial memory of events
- semantic structured memory of facts, concepts, skills

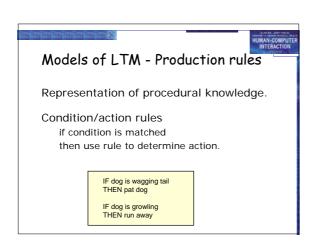

HUMAN-COMPUTE

HUMAN-COMPUTE


semantic LTM derived from episodic LTM

# Long-term memory (cont.)


- Semantic memory structure
  - provides access to informationrepresents relationships between bits of information
  - represents relationships between bits of informatic
     supports inference
- Model: semantic network
  - inheritance child nodes inherit properties of parent nodes
  - relationships between bits of information explicit
  - supports inference through inheritance














# LTM - Storage of information

- rehearsal
  - information moves from STM to LTM
- · total time hypothesis - amount retained proportional to rehearsal time
- distribution of practice effect - optimized by spreading learning over time
- · structure, meaning and familiarity - information easier to remember

# LTM - Forgetting

decay – information is lost gradually but very slowly

- interference
  - new information replaces old: retroactive interference
  - old may interfere with new: proactive inhibition

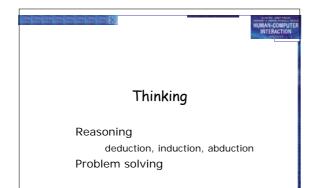
so may not forget at all memory is selective ...

... affected by emotion – can subconsciously `choose' to forget





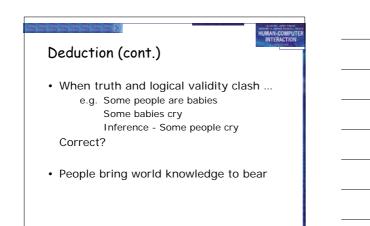
HUMAN-COMPUTER


HUMAN-COMPUTE

recall

information reproduced from memory can be assisted by cues, e.g. categories, imagery

#### recognition


- information gives knowledge that it has been seen before
- less complex than recall information is cue

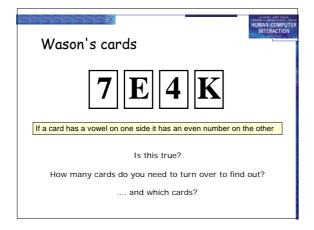


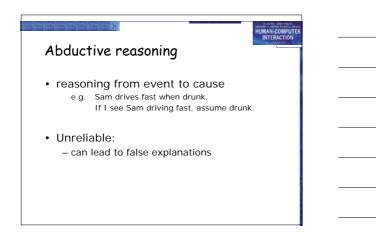
# **Deductive Reasoning**

HUMAN-COMPUTE

Logical conclusion not necessarily true:
 e.g. If it is raining then the ground is dry
 It is raining
 Therefore the ground is dry




# Inductive Reasoning


### Induction:

 generalize from cases seen to cases unseen
 e.g. all elephants we have seen have trunks therefore all elephants have trunks. HUMAN-COMPUTE

#### Unreliable:

- can only prove false not true
- ... but useful!
- Humans not good at using negative evidence e.g. Wason's cards.





# Problem solving



HUMAN-COMPUTE

HUMAN-COMPUTE

- Process of finding solution to unfamiliar task using knowledge.
- · Several theories.
- · Gestalt

  - problem solving both productive and reproductive
     productive draws on insight and restructuring of problem
     attractive but not enough evidence to explain `insight' etc.
  - move away from behaviourism and led towards information processing theories

# Problem solving (cont.)

Problem space theory

- problem space comprises problem states - problem solving involves generating states using legal operators
- heuristics may be employed to select operators
- e.g. means-ends analysis operates within human information processing system
- e.g. STM limits etc.
- largely applied to problem solving in well-defined areas
   e.g. puzzles rather than knowledge intensive areas



Analogy

- analogical mapping:
   novel problems in new domain?
   use knowledge of similar problem from similar domain
- analogical mapping difficult if domains are semantically different
- Skill acquisition

  - skilled activity characterized by chunking
     lot of information is chunked to optimize STM
     conceptual rather than superficial grouping of problems
     information is structured more effectively

# Errors and mental models

#### Types of error

- slips
  - right intention, but failed to do it right
  - causes: poor physical skill,inattention etc.
  - change to aspect of skilled behaviour can cause slip

HUMAN-COMPUTE

HUMAN-COMPUTE

HUMAN-COMPUTE

- mistakes

  - wrong intention
     cause: incorrect understanding humans create mental models to explain behaviour. if wrong (different from actual system) errors can occur

# Emotion

- · Various theories of how emotion works - James-Lange: emotion is our interpretation of a
  - physiological response to a stimuli - Cannon: emotion is a psychological response to a
  - stimuli
  - Schacter-Singer: emotion is the result of our evaluation of our physiological responses, in the light of the whole situation we are in
- · Emotion clearly involves both cognitive and physical responses to stimuli

## Emotion (cont.)

- The biological response to physical stimuli is called affect
- · Affect influences how we respond to situations – positive  $\rightarrow$  creative problem solving – negative  $\rightarrow$  narrow thinking
  - "Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"

(Donald Norman)

# Emotion (cont.)

- Implications for interface design
  - stress will increase the difficulty of problem solving

HUMAN-COMPUTER

HUMAN-COMPUTE

HUMAN-COMPUTE

- relaxed users will be more forgiving of shortcomings in design
- aesthetically pleasing and rewarding interfaces will increase positive affect

# Individual differences

- long term
- sex, physical and intellectual abilities short term
- effect of stress or fatigue
- changing
  - age

Ask yourself:

will design decision exclude section of user population?

# Psychology and the Design of Interactive System

- · Some direct applications e.g. blue acuity is poor
   ⇒ blue should not be used for important detail
- However, correct application generally requires understanding of context in psychology, and an understanding of particular experimental conditions
- · A lot of knowledge has been distilled in guidelines (chap 7)cognitive models (chap 12)

  - experimental and analytic evaluation techniques (chap 9)