

the plains of Gheisra slides 2-7

which are by chance ...
and which are unusual?
to tick the one you think is really random

4 why did you choose the one you did?
\square

昰

two horse races slide 8 \& 9

[1] before you do anything read the instructions
what do you think will happen?
\square
[28) start to toss your 20 coins
Leq place them in two rows: one for heads, the other for tails

4 when one row gets to 10 stop
(2) write down your scores (e.g. heads 10, tails 8)
\square
neq if you have time repeat the exercise

averages
 slide 18

[1) toss 10 coins (A)
Lu write down the number of heads and tails below

4 do the same with the remaining 10 coins (B)
[28) add the two totals to get a 20 coin count (C)

U浪 toss them all to get a second 20 coin count (D)

| | heads | tails |
| :--- | :--- | :--- | :--- |
| A. $\quad 10$ coins | | |
| B. $\quad 10$ coins | | |
| C. 20 coins | | |
| D. 20 coins | | |

UT2 gather into groups of between 5 and 10

Hands on (ctd.) $\Delta_{0} \Delta_{0}$

averages slide 18 (ctd.)

how many in your group?
$\mathrm{n}=\square$
W.8 work out the sum and average for your group

LD we'll work out the average for the whole tutorial
A
B
C
\square
D
everyone \square
\square
\square

昭

variation slide 43

I-8 as a group look again at your data A-D just look at the number of heads

U? estimate the variation in each - how far the individual counts you recorded differ from the average or ideal (5 heads for A/B, 10 for C/D).
$\sum \pm \quad$ if you like calculate the standard deviation or alternatively just eyeball the numbers
(0) write down your groups' figures and then we'll work out the figures for the entire tutorial
group average group variation overall average overall variation

A	B	C	D

N.B. the overall variation figure for the whole tutorial means the variation of your group averages

drunkard's walk slide 47

14 take a single coin and toss it repeatedly

20 draw a line moving upwards for each head and downwards for each tail

[a) compare your walk with others

䟚 4 路

significance test slide 63

are the coins fair?
perhaps they all give more heads than tails?
let's see ... we'll use your data A-D again
(i) because all the coin tosses are independent we can use
the binomial distribution
if the count of heads is too large we could conclude that the coins are not fair.
? how big?
for data A \& B use the binomial table with $\mathrm{n}=10$
for $\mathrm{C} \& \mathrm{D}$ use the binomial table with $\mathrm{n}=20$
(i) I've done it (!) and the values are:

$\mathrm{n}=10$	\#heads > 7	significant @ 5\% significant @ 1\%
	\#heads >8	
$\mathrm{n}=20$	\#heads > 13	significant @ 5\%
	\#heads > 14	significant @ 1\%

compare with your data and write down the result ($\mathrm{n} / \mathrm{s}, 1 \%, 5 \%$) - do you think the coins are fair?
significant?
\# in tutorial at 5%
\# in tutorial at 1\%

A	B	C	D

confidence interval slide 74

[198 now we are going to work out a confidence interval for the probability of a head based on your data
this is actually a bit awkward for the binomial distribution, so we'll use big enough numbers that we can approximate things using the Normal distribution

LT8 add up your individual head counts for C \& D
this gives the total of 40 tosses

$$
\text { total C\&D }=\square
$$

IT divide this by 40 to give an estimate of the probability of a head

$$
\frac{\text { total heads }}{40}=\square
$$

(1) I've worked out the relevant formula for the confidence interval call your number above X, then the confidence interval is:

$$
\left[\frac{\mathrm{X}}{1.1}, \frac{\mathrm{X}+0.1}{1.1}\right]
$$

[帠 work this out for your value of X

$$
\text { confidence interval }=[\quad, \quad]
$$

? does your interval include the 'fair' value of 0.5?
N.B. its more common to see confidence intervals of the form:

$$
[\mathrm{X} \text {-somat }, \mathrm{X}+\text { somat }]
$$

the funny $X / 1.1$ bit is because unfair coins have slightly higher variance than fair ones

workshop session slide 112

? what happens now depends on you ...
keep your own notes!

