proving things

- proving things are different importance & significance
- proving things are the same confidence intervals

working backwards again

deduction

- all men are mortal
- Socrates is a man
- therefore Socrates is mortal

induction

- all men are mortal
- Socrates is mortal
- ? therefore Socrates is a man

scitsitats \leftrightarrow statistics

we know: <u>if</u> real means are different <u>then</u> sample means will be different

we measure: sample means <u>are</u> different

? what to deduce

significance test

hypotheses: H₁ – what want to show H₀ – null hypothesis (to disprove)

 if H₀ were true then observed effect is very unlikely therefore H₁ is (likely to be) true

5% significance level?

it says:

- if H₀ were true then probability observed effect happening by chance is less than 1 in 20 (5%)
- soH0 is unlikely to be trueandH1 is likely to be true

does <u>not</u> say

X probability of H_0 is < 1 in 20

X probability of H_1 is > 0.95

<u>all</u> it says

if H₀ were true ... effect is unlikely (prob. < 1 in 20)

proving differences

often:

- H_0 some things are equal
- H_1 they are different

statistically significance if observed difference >> random variation $\hat{\mu} >> \hat{\sigma}/\sqrt{n}$

proving differences $\frac{\mu}{\hat{\sigma}/\sqrt{n}}$ bigger ratio \Rightarrow smaller p (less likely by chance) top and bottom <u>both</u> estimates (where 't' test comes in)

reasons for significance $\frac{\hat{\mu}}{\hat{\sigma}/\sqrt{n}}$

 $\hat{\mu}$ large – large difference (?important?) $\hat{\sigma}$ small – small natural variation (e.g. natural science) n large – large sample

what if small differences are important? (i.e. $\hat{\mu}$ small)

$\hat{\sigma}$ fixed by the world \Rightarrow need large number of samples (n)

Alan Dix

quick test

true or false?

① 5% significant \Rightarrow H₀ is false & H₁ is true i.e. things are different

② <u>not</u> significant \Rightarrow H₀ is true & H₁ is false i.e. things are the same

neither!!

- 5% significant ⇒ things are different nearly true
- ② not significant \Rightarrow things are the same NO! NO! NO!!!!!

① significant result

normally reason: significant result \Rightarrow H₀ false things are different

- 1 time in 20 you will be <u>wrong</u>
 e.g. conclude drug improves health p<5% 1 in 20 chance it kills everyone
- 1 in 20 significant results are false

statistical proof

<u>all</u> you can do is:

- say something is true
- know how often you will be wrong (on average)
- choose how often you will be wrong! (i.e. choose the significance level)

2 non-significant result

can <u>NEVER</u> reason:

$\begin{array}{c} \bigstar & \text{non-significant result} \Rightarrow H_1 \text{ false} \\ & \text{things are the same} \end{array} \end{array}$

<u>all</u> you can say is: H₁ is not statistically proven

Avoiding Damned Lies - Understanding Statistical Ideas,

lies ...

prosecution: and when did your dislike of the victim turn to hatred*defence*: objection*prosecution*: withdrawn

damn lies ...

Avoiding Damned Lies – Understanding Statistical Ideas,	Alan Dix
---	----------

at InterCHI

presenter:

(*shows slide with graph*) ... not significant

(at end of presentation)

questioner: the results in the graph looked very interesting ...

proving equality

- non-significant not <u>proved</u> different
- real difference may always be smaller than experimental error

 \Rightarrow can <u>never</u> prove equality

• can put bounds on inequality

confidence interval

- bound on true value
- mean of data is 0.6
 95% confidence interval is [-0.7,1.3]
- says if you conclude: real mean is in the range [-0.7,1.3]
 95% of the time you will be right!

counterfactuals

- 95% confidence interval is [-0.7,1.3]
- does <u>not</u> say: there is 95% probability that the real mean is in the range [-0.7,1.3]
- it either is or it isn't!
- <u>all</u> it says:
 95% probability that you are right

proven!

H₀: no difference (real mean is zero)

experimental result: mean is 0.6 significance test: n.s. at 5% - so what!

95% confidence interval: [-0.7,1.3]

? is 1.3 is an important difference