finding things out

problems:

(1) seeing through randomness
(2) knowing when you have

solutions

(1) seeing through randomness:
\checkmark large numbers
\checkmark averaging
(2) knowing when you have
\checkmark measuring variability
\checkmark statistical significance

large numbers

- more drops \Rightarrow less difference

summing

- add up several races
- some random effects cancel
- overall difference: large: $\quad 83-76=7$
- proportionate difference: small: $7 / 83<10 \%$
- average scores close:

$$
8.3-7.6=0.7
$$

heads	tails
5	10
10	7
8	10
10	4
10	7
9	10
10	3
10	5
6	10
5	10
83	76

fairness and independence

- fairness:
each outcome has same probability
i.e. probability of head $=1 / 2$
- independence:
each toss has same probability

fairness affects average

- number of heads $\approx \mathrm{n} \times \operatorname{prob}($ head $)$
- but not exact ...
... the world is very random

unbiased coin

10 series of 20 tosses, $\operatorname{prob}($ head $)=0.5$:

1:		12
2 :	HTTTTHTHHHTHHTTHHTHH	11
3 :	HHTTTTTHHTTHHTHHTHTT	
4 :	THTTTH ${ }^{\text {a }}$ (13
$5:$	HTTTTHTTTHнTHнннтTTT	
6 :	TTTTHTTTH ${ }^{\text {a }}$	
7 :		
8 :	тнннтнтTннтнтннтнтTH	11
9 :	HTTTTTTTTH ${ }^{\text {atTTHTHHHH }}$	
10:	HhнTTHHHHTTTHHTHTTTH	11
	average	

biased coin

$\operatorname{prob}($ head $)=0.8:$

1:	ннннннннннтНннннннTH	18
2:	Тнтннтнннннннннннннн	17
$3:$	Тнннтнтннннннннннннт	16
4:	нтнннннннннтннннтннн	17
5:	нннТннннннннннннтннн	18
6:	нннТннннтннтнтнннннт	15
7:	нтTTнTнтнннннтнтнннн	13
$8:$	HHTTHHTHHHHTHHTTTHTH	12
9:	ннннннннннннннннтннн	19
10:	нтнннннннннннннтнннн	18
	average	

independence affects variability

- independence: context doesn't matter e.g. $\operatorname{prob}($ head after head $)=\operatorname{prob}($ head after tail $)$
- positive correlation:
things vary together
e.g. $\operatorname{prob}($ head after head $)>\operatorname{prob}($ head after tail)
- negative correlation:
things vary in opposite way
e.g. prob(head after head) < prob(head after tail)

$$
\begin{aligned}
& \text { positive correlation } \\
& p(H)=p(T), \text { but } p(H \text { after } H)>p(H \text { after } T) \\
& \text { 1: HTTTTTTTTTTTTTTTTTT } 1 \\
& \text { 2: TTHHHHHTHHHHHHTHHTTT } 13 \\
& \text { 3: нннннттннннннттнттнн } 14 \\
& \text { 4: нтннттннннннннннннтт } \\
& 9.6 \quad \sigma=5.0
\end{aligned}
$$

- long runs of heads and tails
- high variability of head count

$$
\begin{aligned}
& \text { negative correlation } \\
& \mathrm{p}(\mathrm{H})=\mathrm{p}(\mathrm{~T}), \text { but } \mathrm{p}(\mathrm{H} \text { after } \mathrm{H})<\mathrm{p}(\mathrm{H} \text { after } \mathrm{T}) \\
& \text { 1: TтнтннтннтнтнтнтTнTH } 10 \\
& \text { 2: TTHHTHTHTHTTHTHHTHHT } 10 \\
& \text { 3: HTHTTHнTTHTHTHTHTHTH } 10 \\
& \text { 4: тнтннттнтнттнтнтнттн } 9 \\
& \text { 5: HTHTHTHTHTHHTTHHTTHT } 10 \\
& \text { 6: TTHTHнTTннтнтнTHTнTH } 10 \\
& \text { 7: TTHHTTHTHTHTHTHTHTHH } 10 \\
& \text { 8: нтнтнтTнTннтTнTTHннT } 10 \\
& \text { 9: нннтнннтнтнттнннтннт } 13 \\
& \text { 10: THHHHTHTTHTTHHTTHTHT } 10 \\
& \text { average } \frac{10.2}{} \quad \sigma=1.0
\end{aligned}
$$

- alternating heads and tails
- low variability of head count

