
1

Is the PIE past its sell-by date?

Alan Dix

Lancaster University, UK
www.hcibook.com/alan/talks/mdh-fest-2004

λ
20 years ago

the PIE and all that

λ
λ
λ

interaction models

• generic models of classes of system

• mainly to aid understanding of general issues

the PIE model (Dix & Runciman, 1985)

• ‘minimal’ model of interactive system
• focused on external observable aspects of

interaction

P
I

E

R

D

result

disp

properties – WYSIWYG

∃ predict ∈ (D → R) s.t. predict o display = result

• but really not quite the full meaning

P
I

E

R

D

predict
result

display

proving things – undo

∀ c : c undo ~ null ?

only for c ≠ undo

Sa

S0

Sb

S0

a

b

undo

undo

undo Sa Sb=

2

the cube (Mancini, 1997; Dix & Mancini, 1997)

• generic framework for layered systems
• undo, back and history

Ha Sa
Ia

H S
I

eff proj

Ha Sa
Ia

H S
I

eff proj

 . c

 . c

doita(. ,c)

doit(. ,c)

<>
0sa

1

<> 0s

citations 1993-2001

1993
5% 1994

14%

1995
10%

1996
18%1997

14%

1998
10%

1999
10%

2000
14%

2001
5%

still going strong

• first book - citeseer.nj.nec/com citation count

... and more

• chapter in Carroll theory book
Upside down ∀s and algorithms ...

• and in a leading textbook!!
... and the Italians love it!

• in a leading textbook!!

... and the Italians love it!

λ
further back

a formal methods
success story

λ
λ
λ

problem

• context
– mid 80s
– local authority DP dept

• transaction processing
– vast numbers of users
– order processing, pos systems etc.
– COBOL!

• existing programs ... didn’t work

what happens

 user edits form
 message goes to TP engine
 passed to application module
 which processes the message
 and prepares new screen
 which is sent to the user
....

 user edits form



 message goes to TP engine


 passed to application module 

....

 which is sent to the user



 which processes the message 
 and prepares new screen 

abcdef
ghijklm
nopqrst
uvwxyz

3

structure of programs

if ..

if .. if ..

if .. if .. if .. if ..

why?

program is trying to work out
what is happening!

• standard algorithm
– program counter implicit

• TP, web, event-based GUI
– need explicit dialogue state

many users – one application

central server

user

corporate
database

terminal

other
users

mixed up state

user A starts multi-screen search list

application remembers ‘next_record’

user B starts multi-screen search list

application overwrites ‘next_record’

user A selects ‘next screen’ ...

application uses remembered ‘next_record’

user A sees next screen of B’s search!

oops!

solution?

• flowchart!

• not of program
 ... but of dialogue

• a formal dialogue
specification!

• hand transformed
to boiler-plate code

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

details ...

• miniature
screen sketch

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

Delete D2
Name: Alan Dix
Dept: Computing
delete? (Y/N): _

4

details ...

• minimal
internal details

Delete D1

Please enter
employee no.: ____

Delete D3

Name: Alan Dix
Dept: Computing
delete? (Y/N): _
Please enter Y or N

Delete D2

Name: Alan Dix
Dept: Computing
delete? (Y/N): _

answer?
C2

Finish

Finish

read record
C1

delete record
C3

other

NY

answer?
C2

delete record
C3

other

NY

lessons

useful – addresses a real problem!

communication – mini-pictures and clear flow easy to talk through with client

complementary – different paradigm than implementation

fast pay back – quicker to produce application (at least 1000%)

responsive – rapid turnaround of changes

reliability – clear boiler plate code less error-prone

quality – easy to establish test cycle

maintenance – easy to relate bug/enhancement reports to specification and code

λ
formal futures

ubiquity and physicality

λ
λ
λ changing nature of the interface

• ubiquitous computing
computers everywhere!

• many simple systems
+ complex interactions

• sounds like a job for
formalismformalism

study the old to design the new

– work with Masitah Ghazali

• look at ordinary consumer devices
– washing machine, light switch, personal stereo

• why?
– we are used to using them ourselves
– they have been ‘tested’ by the marketplace
– they embody the experience of designers

physical–logical connections

physical–logical
mappings

device

physical aspects

knobs, dials,
buttons, location,

orientation

virtual aspects

screens,
lights,

buzzers, speakers

(ii) physical effects

(iii) virtual effects

show message,
turn light on

motors, effectors

(a) physical manipulation (i) sensed inputs

logical
system

A B

C
(c) felt feedback

(d)‘electronic’ feedback

(b) perceived state

see message on screen

resistance,
? physical sounds ?

turn knob, press button

effects on
logical objects

5

fluidity

• ‘naturalness’ of device–logical mapping

?

device & logical states

switch

UP

DOWN

user pushes
switch up
and down

light

OFF

ON

compliant interaction

+ rotary knob exhibits
symmetry of machine–system
interaction

+ user sets the program by
turning the dial … system also
turns the dial itself as the
program advances

+ expert users learn to fine tune
the device: skip programmes
etc.

stop spin

rinsewash

twist knob

twist
knob

twist
knob

twist knob

program
advances

incidental interaction

• car courtesy lights
– turn on

• when doors unlocked/open
– turned off

• after time period
• when engine turned on

incidentally the lights come on

driver's purpose is to get into the car

issues and process

• no accepted methods but … general pattern

• uncertainty
– traditional system due to errors
– sensor-based so intrinsic to design

• uncertain readings, uncertain inference
• usually control non-critical aspects of environment

• process … identify
– input – what is going to be sensed
– output – what is going to be controlled
– scenarios – desired output and available input

designing a car courtesy light

• available input
–door open, car engine

• desired output
–light!

• identify scenario
• label steps

 0 don’t care
 +, ++, … want light
 –, ––, … don’t want it

• legal requirements
 light off whilst driving

• safety
 approaching car??

1. deactivate alarm 0
2. walk up to car 

3. key in door –

4. open door & take key +
5. get in ++
6. close door 0
7. adjust seat +
8. find road map ++
9. look up route +++
10. find right key +
11. key in ignition –
12. start car 0
13. seat belt light flashes 0
14. fasten seat belt +
15. drive off –––––

illegal to drive with
interior light on

safe? light
advertises presence

6

in summary ...

after 20 years

the PIE is still fresh

