
I . 

Interactive systems design and formal development 
are incompatible? 

INTRODUCTION 

AlanDix 
Michael Harrison 

Human-Computer Interaction Group 
University of York 

We have argued elsewhere that formal methods are useful in the design ofinterac
tive systems [Dix 1985, Dix 1987a, Dix 1987b]. Further, we have argued that 
when formal methods are being used anyway for system design, it is essential that 
human factors considerations be explicitly included. However, when we consider 
the relationship between the requirements of the process of interactive system 
design, and the process of formal development, several conflicts occur. -These 
problems are not unique to interactive systems design, but are inherent in the con
cept of formal development; it is just that the rigours of interactive systems inten-

" sify and bring these problems to notice. 

After considering the differing requirements of the two domains of interactive sys
tems design and formal refinement, we will proceed in a dialectic style. Conflicts 
will become apparent between the sets of requirements, which we will attempt to 
resolve, eventually leading to the need for, and proposals for techniques for struc
tural transformation of systems at the module level during refinement. The tech
nique of interface drift will be discussed in detaiL 

THE REQUIREMENTS OF INTERACTIVE SYSTEMS DESIGN 

Interactive systems design gives rise to three problems: 

• Formality gap 

o Rapid turnaround - iterative design 

• Fast prototypes 

These are described below: 

alandix
Text Box
The Theory and Practice of Refinemented. J. McDermid. Butterworth Scientific. 12-26



-- -- ----- .---~.--- --- .------ ----- ---- --, ---- ---- -~-~ - --- ----- - --- -------

Formality gap 

Designing a system involves a translation from someone's (the client's) informal 
requirements to an implemented system. Once we are within the formal domain 
we can in principle verify the correctness of the system. For example, the com
piler can be proved a correct transformer of source code to object and we can 
prove the correctness of the program with respect to the specification. Of course, 
what can not be proved correct is the relation between the informal requirements 
and the requirements as captured in the specification. This gulf between the infor
mal requirements and their first formal statement is the formality gap (fig. 1). For
malising Her requirements is a complex process, not only are they not formally 
understood to start with, but it is likely that they are funda.rnentally unformalis
able. We are thus aiming to only formalise some aspect of a particular require
ment and it is difficult to know if we have what we really want. 

Formal 
Specification 

Formal 
Consistency 

System 

figure 1 - formality gap 

We have suggested the use of an abstract interaction model [Dix 1985, Dix 
1987a] to describe some desirable generic interface properties. If the abstract 
model is designed well for a particular class of principles, it can help bridge the 
formality gap. To achieve this, there must be a close correspondence of structure 
between the abstract model and the informal concepts. However the abstract 
model will only capture some of the requirements, and the same principle of struc
tural correlation must apply to the entire interface specification. 



Rapid turnaround 

Because of the formality gap, we will never entirely capture the requirements for 
an interactive system [Monk 1988] and thus some form of iterative design cycle is 
usually suggested. That is a prototype system is built based on a first guess at the 
interface requirements, this is then evaluated, and new requirements are formed. 
The turnaround of prototypes must be fast for this process to be effective, perhaps 
days or even hours. Frequently this is done using mockups that have the immedi
ate appearance of the finished product, but lack the internal functionality. How
ever many of the interface properties we have studied permeate the whole design 
of the system, and hence we would see it as necessary to have some reasonable 
proportion of the functionality in this prototype. 

Fast prototypes 

Not only does the turnaround of prototypes have to be rapid, but the prototypes 
themselves must execute reasonably fast to be usable. A slow interface has a very 
different feel toa fast one, and hence wrong decisions can be made if the pace of 
the interaction is unreal. The evaluator may be able to make some allowance, but 
this ability is limited. First, it is very hard to evaluate an interactive system where 
you type for a few seconds, -then-have" to go away for ten minutes and have a cup 
of tea before seeing what you have typed appear. The only thing to be said in its 
favour, is it might encourage predictability as a result of the "gone for a cup of 
tea" problem! [Dix 1985] Not only is it difficult to appreciate the system at all, but 
also very poor performance can encourage the wrong decisions to be taken, negat
ing the benefits of prototyping. For example, imagine designing a word-processor. 
One design is a full screen, "what you see is what you get" editor, the other a line 
editor with cryptic single character commands. At the speed envisaged in the pro
duction version, the full screen editor would be preferable, but when executed a 
hundred times slower, the line editor, requiring fewer keystrokes and not relying 
so much on screen feedback, would appear better. It was for just such situations 
that line editors were developed! Of course, such a major shift would be obvious 
for the designer, however there may be many more subtle decisions wrongly taken 
because of poor performance. 

Contrast with non-interactive systems 

We can contrast the above requirements with the design of non-interactive systems 
such as data processing or numerical applications. 

Whereas the requirements of interactive systems are very difficult to formalise, for 
a DP application like a payroll, this may not be too much of a problem. The 
requirements are already in a semi-formal form (eg. pay scales, tax laws) and they 
are inherently formalisable. Similarly, because these requirements are well under
stood, there is less need for iterative design, changes in requirements may be over 



requirements contrast 

interactive system DP or numerical application 

wide formality gap well understood requirements 
rapid turnaround - iterative design slow turnaround 

fast prototypes - for usability functionality sufficient 

periods of months or years with corresponding turnaround times. Finally, with 
such applications it is sufficient to prototype the functionality only with little 
regard for speed. It is easy to produce a set of test data and then run a numerical 
algorithm overnight to check in the morning for correctness. Even complex distri
buted systems may be able to be simulated at a slow pace. 

FORMAL AND CLASSICAL DEVELOPMENT COMPARED 

In this section we will compare formal development with classical development. 
By classic~l I mean a non-formal approach to development (hacker rather than 
Homer) [Homer BC]. I will assume that the requirements are known and will con
side-F-hew these requirements are used to produce a first implementation, through 
optimisation to a version that is suitable for use (perhaps as a prototype or even as 
a product). Then how these two processes respond to a changing requirements 

Initial development 

Classical 

Given loosely stated requirements the programmer will, possibly using some inter
mediate graphical or textual plan, produce a first implementation of the program. 
Typically this will already be structured with efficiency in mind. However, if this 
is not fast enough several stages of optimisation may ensue before reaching a ver
sion suitable for release (fig. 2). 

faster 

figure 2 - classical development 

Interspersed with this optimisation process will be the debugging. In principle one 
might debug each version in turn until one is sure of correctness. In practice, this 
debugging will be distributed, errors present from early implementations being 
corrected only later in the process. These changes will probably never be reflected 
in those early points as the early versions are likely to be overwritten, or at best 
stored in a source control data base. 



Formal 

At this stage the formal development process is quite similar. The requirements 
will be first used to generate a specification. This first specification will then go 
through several levels of refinement within the formal notation, both to make it 
constructive enough for implementation and possibly as a first stage in moving 
towards an efficient formulation. The final product of these specifications will be 
used to derive the first implementation, which itself may then be optimised 
through several versions before a releasable version is produced (fig. 3). 

first 
imp. H faster 

figure 3 - formal development 

Again there will be debugging steps, both in the specification as each refinement is 
checked against the previous specification for correctness and in the implementa
tion as this also is checked for correctness. The only difference here from classi
cal development is that debugging is less likely to involve errors from previous 
versions. In particular, because the initial specification is much more directly 
derived from the requirements (it may in fact be a formal statement of the require
ments) there are likely to be less changes needed to make the final product match 
the informal requirements. With some formal development paradigms, such as 
refinement by transformation, it could be argued that there is never any debugging 
as all versions are guaranteed to be correct. However, even here back-tracking in 
the transformation process is a form of debugging. From now on we will largely 
ignore these debugging steps, as they form a development process at a finer granu
larity than we are considering. 

Changing requirements 

Classical 

If the changes in requirements are extreme, the programmer may be tempted to 
throwaway all previous work and start from scratch. More usually, however, the 
most developed version of the system will be used and altered to fit the new needs 
(fig. 4). Because the fastest, optimised version is used there is unlikely to be much 
need for optimisation steps, except where radically new algorithms have been 
introduced. Note especially, that the changing requirements are not seen to affect 
at all the early un-optimised versions of the program, they are just history. 



old 
release 

flls, H fas,e:-imp. , 
'-----' '--_-.1 

new 
release 

figure 4 - classical development, change in requirements. 

Formal 

The formal situation is very different. The intermediate versions, and especially 
the first specification are the proof that the final version really does satisfy the 
requirements. There may well be testing and validation as well, but it is the pro
cess of development itself which is the major source of confidence in correctness. 
This is even (and especially) true when the process does not employ automatic 
checking. It is insuffiCient (although tempting) to change the specification a bit, 
change the final version a bit, and say the process is still formal. No, for formal 
correctness a change in requirements demands a complete rework of the whole 
development process from initial specification to final optimised system (fig. 5). 

Again in worst case, this may involve a complete rewrite, but usually will be 
obtained by propagating small changes through the stages. 

old 
release 

new 
release 

figure 5 - formal development, change in requirements 



CONFLICT - rapid turnaround and refinement 

How do the requirements for interactive systems design fit into this picture. 

• rapid turnaround => lots of changes in requirements, say m in alL 

• fast prototypes => lots of steps in the refinement process, say n steps. 

That is the length Cn) of the development chains, and the number of them Cm) are 
far greater for interactive systems compared with non-interactive. These interact 
with the cost figures: 

• Classical - this takes n steps to produce the first version, and one further step 
for each requirements change, so m +n versions will have finally been pro
duced. 

• Formal - this too takes n steps to produce the first version, but then all 
requirements changes also require n bits of work, so the number of separate 
specifications and programs eventually produced will be m Xn . 

A first glance the difference between these two cost figures, m+n for classical 
development and mXn for formal development, is astounding. One wonders if 
formal development can ever be a practical proposition. A one-off cost can be 
acceptable, even if hig~,)ut a recurring cost like this could never be. 

Happily, the situation is not as bad as it seems. First, the number of "changes in 
requirements" may be vastly different. For a system using classical methods, 
many of the requests coming in for changes will not be true changes in require-

'ments, but re statements of parts of the original requirements the system does not 
satisfy. That is, long term debugging. As we've noted, formal development 
should reduce this to a minimum Cor even zero if the requirements are a formal 
document themselves). Unfortunately this argument does not hold too well for 
interactive systems design, as we've noted that here formal methods will not per
fectly capture informal requirements. Again the number of development steps 
may differ. Formal development may require the additional refinement steps, but 
the costs of each step will be much reduced as there will be less debugging. 

Orthogonal development 

It is clearly critical just how costly the changes to the intermediate specifications 
are when requirements change. In the best case, the n changes needed for formal 
development may be a distribution of the effort of the single change in the final 
implementation for classical development. We would hope that a small change in 
requirements, would only require a small change in each of the intermediate 
specifications. 

Modularisation is the standard vehicle for such localisation. A small change in 
requirements is likely to only require changes in one or two modules of the 
specification. If the refinement and the implementation preserve the 



specification's module structure then we can alter the relevant modules in the 
refined specifications and implementation and reuse all other modules. That is the 
refinement process must obey the principle of structural correlation. 

Cedar [Donahue 1985] uses such a system, carefully maintaining dependency 
information so that recompilation upon the change in a module is minimised. 
(Compilation is of course a form of refinement.) However the idea of locality in 
Cedar, as in most traditional languages such as Ada [Ichbiah 1983], is based on 
type correctness. The semantic repercussions of changes are not considered, and it 
is not obvious therefore that the rest of the system will behave as expected. 

Happily, the situation in formal development can be much better. Modularisation 
based upon semantically defined interfaces leads to full semantic independence 
between modules. One module cannot affect another module without a change in 
the interface. This leads to an orthogonal development idiom. The specification 
consists of many modules, as do each of the intermediate stages to the final imple
mentation. Development within anyone of those modules is independent of all 
the rest. If a change is made in one specification module then an early, perhaps 
very inefficient, version of the corresponding implemented module can be used 

~it~ ~ighly optimised existing modules. This means that we can get a reasonably 
fast prototype back into the hands of the interface designer very rapidly. 

CONFLICT - structural correlation and orthogonal development 

To summarise where we have got to: The fonnality gap forces us to match the 
structure of interaction in the original specification. The conflict between the need 
for rapid turnaround and fast prototypes, and fonnal refinement forced us to use 
orthogonal development, with structural correlation throughout the refinement pro
cess. Thus we will arrive at an implementation with a structure still matching 
closely the structure of interaction. However at the end of the day, in order to 
obtain a fast prototype we will need an efficient implementation structure. Unfor
tunately the interaction structure and the structure required for efficiency do not 
usually agree. 

structure of 
interaction 

"'» efficient ----~-..,. ~.,------implelnentati.on 
/ '" structure 

It is worth noting that the experience of fonnal development is likely to be very 
different here from classical development. In the latter, the structural design will 
from the beginning be oriented towards efficient implementation. In fact, the 



same can be done with formal specifications. But we argue that this is not what a 
specification is for and such trends are likely to yield errors in translating require
ments to sp~cification [Jones 1980]. In short, a good formal specification is likely 
to have problems with orthogonal development. 

Before throwing away orthogonal development, it is worth noting how much can 
be done within the idiom. Many standard techniques can be used within a module. 
For instance, choosing efficient representations, caching results from other 
modules to reduce function call overheads and general algorithmic improvement. 
As a general rule most time is taken with the modules lowest in the usage ~ierar
chy, so obviously most effort goes into improving these low-level modules. This 
will be tempered however with the use of a "don't use it" strategy - avoiding the 
need for a slow operation rather than speeding it up. Caching is one heavily used 
application of this principle. 

However,. despite large gains through intra-module optimisation, the time may 
come when the' system is still too slow and inter-module optimisation is needed. 
the challenge is therefore to achieve this in as well structured a way as possible, 
preserving correctness, and making easy the reuse of existing modules as require
ments change. 

NON-ORTHOGONAL DEVELOPMENT - INTERFACED RIFT 

When is non-orthogonal development necessary? We consider the simple case of 
two modules, a server providing some functionality, and a client which uses this 
service. The need for intra-module refinement shows up in two ways. 

• Information - the client module could perform further optimisation if the 
server could give it some more information. For instance, the use of locality 
information to tell the client about where the server has made changes. This 
locality information is not usually present in the original specification inter
face and is therefore not normally available to the client although the server 
"knows" it. This type of information may enable the client to optimise 
changes in its own data structures. 

• Services - there may be computations in the client module involving many 
calls across the interface to the server. Such operations may well be per
formed far more efficiently by the server, reducing function call overhead at 
very least, but quite likely being more efficient in general due to the server's 
knowledge of representation and (again) information not available across the 
interface. 

As we can see the two are not entirely independent, and both require interface 
drift, a movement of some information or functionality across the interface 
between two modules. In general, the information category requires a drift of 



functionality across the interface upwards from server to client, as the server 
"opens itself up". Similarly, the services category requires a downwards drift of 
functionality, as the server "takes over" jobs previously performed by the client. 

Informal interface drift 

Interface drift is not a new phenomenon. However it is usually carried out in an 
informal manner: if services require the addition of extra operations at the module 
interface, these are added on the spur of the moment without too much thought. 
So long as there is some form of target language modularisation a change like this 
will be obvious. Other changes may slip through without notice: for instance, 
adding extra results from a function, or requiring additional parameters. The C 
language (pre-ANSI standard) [Kernighan 1978] will allow such changes without 
altering any header files (the interface documents) but this would be picked up 
with typed interfaces such as Cedar, Modula or Ada. More insidious still is when 
the type and number of parameters and result remain unchanged, but the semantics 
alter. For instance, imagine a stack module with a top function yielding the top 
value on the stack. It is noticed that all calls to top are followed immediately by a 
call to pop to remove that value from the stack. To save this additional function 
call, the top function is changed to pop the stack as a side effect. The interface 
looks identical, but its functionality has altered drastically. 

Interface drift due to information requirements can be even harder to detect. 
When the information is passed explicitly it is very similar to the situations above. 
However, often general information about the semantics may be passed infor
mally, especially if the same person is coding both modules. 

Informal interface drift that is not properly recorded can lead to disastrous results. 
For instance, when a colleague was implementing some windowing routines for an 
application, one of the authors 'let on' that only the currently selected window 
ever changed between user interactions. This information was used to improve the 
speed of the windowing. Later, inevitably, the same windowing routines were 
used when the application had changed slightly. Now other windows were also 
subject to change, requiring a major rewrite of parts of the windowing code. 

We can imagine similar problems to the above with the stack example. But 
surely, if properly documented with interface specifications amended to record 
changes in semantics or assumptions made about behaviour, interface drift is an 
acceptable part of formal development? In fact, this is not the case. 



Reuse and non-orthogonal development 

Interface drift is a form of non-orthogonal development. Orthogonal development 
assumes that changes to one module affect no others, however with interface drift 
an interdependence is set up between different module development histories. 
Orthogonal development was said to give us fast turnaround and extensive reuse 
of optimised modules. So we would expect to get problems of reuse caused by 
interface drift. 

How do these problems manifest themselves? Imagine the following scenario. 
We have two specification modules, A and B. A is the client and uses operations 
defined in B using an interface specification B _ def. A and B are refined (by 
several steps) to A 1 and B 1 respectively. The interface is still of course B _ def . 

At this stage interface drift is seen as necessary. New modules A 2 and B 2 are pro
duced with interface B _ def'. So long as we prove that A 2 using B 2 behaves ident
ically to A 1 using B1 correctness is preserved. After this, more optimisation is 
carried out yielding A 3 and B 3 still with the interface B _ def'. Any changes to 
other parts of the specification leave A and B 's development unaffected. Prob
lems come when B 's specification is altered to B *. The development of B must 
be redone and a new first implementation of B * is produced. It still satisfies 
B _ def and so can be used with A 1. Unfortunately it cannot be used with the 
heavily optimised version A 3. Perhaps later a version of B * can be developed that 
mimics the development of B and satisfies B_def', but for the moment the work 
done in producing A 3 cannot be reused. 

In short, non-orthogonal development hampers reuse. 

Mechanisms for interface drift 

Some simple points of refinement style can help reduce the impact of non
orthogonal development. First, it should always be left as late as possible in the 
refinement and optimisation process. This means that if some of the development 
of a module cannot be reused after another module with which it is linked by inter
face drift has changed, at least the amount of work wasted is not too great. 
Second, the desire to perform such tuning must be tempered by the recognition 
that one or other module may be required for use elsewhere or be subject to a 
change in requirements, and only changes that are thought to be of general useful
ness should be perfonned until the system has begun to solidify. However, these 
are councils of perfection. How should we proceed when interface drift is deemed 
to be necessary? 

A general picture of interface drift is as follows. Module A invokes B via an 
interface B def, and is transformed to two new modules A', B' with interface 
B_def'. 



A A' 

uses uses 

implements implements 

B B' 

figure 6 - non-orthogona1 development step 

As we've said, the two composites A-using-B and A'-using-B ' must be proved 
equivalent. This is not ideal, not only because of problems with reuse, but also 
because it is a large proof involving both A and B , and further the whole idea of 
having loose interface specifications is to hide unwanted detail. In many cases the 
following easy and clean method can be used: 

The transformation from B _de! to B _de! I is often such that the operations in -- -
B _de! I can be defined in terms of those in B _de!. We can define a new transfor-
mation module C, which comprises exactly those definitions, and we get the fol-
lowing situation. 

A A' A' 

uses uses 

C 

implements implements 

B B' B' 

figure 7 - interface drift 

In the first stage we only have to prove the equivalence of A and A I-using-C, 



which is considerably simpler since C is likely to be small. Similarly in the 
second stage we need only satisfy ourselves that C -using-B is equivalent to B '. 
Thus we have factorised the proof effort and obtained a much more controlled 
breakdown of the interface barrier. 

As well as factoring proof effort this also gives us a means of enhancing reuse and 
ensuring continuity in implementation. The transfonnation module, if coded, can 
be a means to smooth implementation change (whether or not fonnal methods are 
used). Further, if changes in requirements mean the specification of a new module 
D satisfying B _de! then we can initially code this very simply as D _coded and 
then C _coded -using-D _coded will interface properly to A' _coded, and thus we 
quickly have a working prototype with the new module. As time allows we can 
define a module D' equivalent to C -using-D to bring the system back up to speed. 

This technique is comparable at the system level to program transfonnation tech
niques such as fold/unfold or tail-recursion removal [Feather 1982]. 

Zdonik uses a somewhat similar technique in his object-oriented database for ver
sion management [Zdonik 1986]. He allows object type definitions to change and 
uses filter functions to translate between old and new types. These filters are the. 
parallel of the module C. The technique proposed there is only appliOO to ·a sys
tem employing (effectively) single sorted algebras whereas the scheme proposed 
here is for multi-sorted algebras and could even involve large changes such as the 
addition or removal of data-types from the interface. 

, 

CONCLUSIONS - an interface for formal development environments 

Software Engineering 

An orthogonal development paradigm fits most closely with traditional software 
engineering practice, and is necessary for the frequent turnaround of requirements 
for interactive systems. However it conflicts with the need for structural correla
tion between requirements and specification. A technique of structural transfor
mation, interface drift, has been described which helps to control the complexity 
of non-orthogonal development aiding proof and reuse. It is however still more 
complex than simple development, so the general advice of putting off such steps 
till late in refinement still holds (and where possible avoiding it entirely). In par
ticular, overlapping cases of interface drift, whilest being far better behaved then 
typical unstructured development clearly pose problems. 

The techniques have been presented from the view of the particular pairs of 
modules concerned. Elsewhere a more coherent description is given of the high 
level representation of such steps within a system development database [Dix 
1989]. 



Human Interface (of development environment) 

The discussion has been focused on the rigours placed on formal development 
when the subject of that development is an interactive system. However it leads to 
important questions about the cognative demands of the resulting process, and the 
user interface to any support system. Recalling the comparison between classical 
and formal development processes, the classical took m+n steps to the formal's 
m Xn . Although, we argued that the actual effort expended would not be as 
extreme as this suggests, it is likely that the number of documents (formal and 
informal) produced will approach this level. That is, the complexity of formal 
specification 'in the small' is likely to approach that of classical programming 'in 
the large'. 

Large scale programming has in the past been supported by well documented 
analysis and management structures and currently project support environments 
are being developed to aid this process. However, the time-scales involved in 
interactive systems design preclude these approaches requiring instead environ
ments more akin to exploratory programming [Goldberg 1984]. Marrying these 
conflicting styles will require exceptional organisation and ingenuity in the 
environment and its user interface. 

Whilest the development process is totally orthogonal, the complexity is unlikely 
to be too bad, as the documents can be located in a matrix, the dimensions of 
which a reasonably small. However non-orthogonal development steps 
significantly complicate this picture. They make the structure more complex, 
introducing problems of naming and representation. In the example given of inter
face drift, we have assumed that the two resulting modules inherit the names of the 
original two, but it may be that the amount of functionality transferred across the 
interface in C is such that we feel that the new server should really be the natural 
successor of the A stream whilest the new client is a mere stub, constituting a new 
name space. Similar issues arise if a module stream completely disappears, or if a 
module is decomposed. Similar issues arise when considering graphical represen
tations. Whilest such issues are apparently insignificant formally, they will have a 
major effect on the usability of formal development environments. 

REFERENCES 

Dix 1985. 

Dix 1987a. 

A.J. Dix and C. Runciman, "Abstract Models ofInteractive 
Systems", pp. 13-22 in People and Computers: Designing the 
interface, ed. P. Johnson & S. Cook, Cambridge University 
Press (1985). 

A.J. Dix, M.D. Harrison, C. Runciman, and H.W. Thimbleby, 
"Interaction models and the principled design of interactive 



systems" ,pp. 127-135 in Proceedings of European Software 
Engineering Conference, Springer-Verlag (1987). 

Dix 1987b. A.I. Dix, Formal Methods and Interactive Systems: Principles 
and Practice, D.Phil. thesis, Department of Computer Science, 
University of York (1987). 

Dix 1989. A.J. Dix, Software engineering implications for formal 
refinement, (submitted to ESEC'89) (1989). 

Donahue 1985. James Donahue, "Cedar: An environment for experimental 
programming", pp. 1-9 in Integrated project support environ
ments, ed. J McDermid, IEE Software Engineering Series 
(1985). 

Feather 1982. Feather, M.S., "A System for Assisting Program Transforma
tion", ACM Transactions on Programming Languages and 
Systems 4(1), pp. 1-20 (1982). 

Goldberg 1984. Adele Goldberg, Smalltalk-80, The interactive programming 
environment, Addison-Wesley (1984). 

Homer BC. Homer, Iliad, .circa 900 BC. 

Ichbiah 1983. ----rn. Iclibiah and et al (eds.), "Reference Manual for the Ada 
Programming Language", ANSI/MIL-STD-1815A-1983 
(1983). 

Jpnes 1980. C. B. J ones, Software Development: A Rigorous Approach, 
Prentice-Hall (1980). 

Kernighan 1978. B. W. Kernighan and D. M. Ritchie, The C programming 
language, Prentice Hall (1978). 

Monk 1988. 

Zdonik 1986. 

A. F. Monk, P. Walsh, and A. J. Dix, "A comparison ofhyper
text, scrolling and folding as mechanisms for program brows
ing", pp. 421-436 in People and Computers: From Research to 
Implementation - proceedings HCI' 88, ed. D.M.Jones & 
R.Winder, Cambridge University Press (1988). 

S. B. Zdonik, "Version management in an object-oriented 
database", pp. 405-422 in Advanced Programming Environ
ments, ed. Reidar Conradi, Tor M. Didriksen and dag H. Wan
vik, Springer-Verlag, Lecture Notes in Computer Science 244 
(1986). 






