
A Comparison of
Hypertext, Scrolling and
Folding asM echanisms for
Program Browsing

Andrew F. Monk, Paul.Walsh &
Alan J. Dix

Departments of Psychology and Computer Science,
University of York, York YOl 5DD, U.K.

Hypertext removes some of the constraints of conven­
tional linear text by providing mechanisms for physicaily
realizing the conceptual links between related sections of
material. This research examines the use of a hypertext
browser with a literate program. A literate program has
a sequential structure, in that it is divided into sections
presented in a particular order, and a hierarchical struc­
ture, in that some sections 'use' other sections.

Two experiments are described which compare the per­
formance of users browsing the same program presented
either as a linear or hypertext structure. In Experi­
ment lone group used a hypertext browser the other two
scrolling and folding browsers. The hypertext browser
is shown to be inferior to the scrolling browser under
these particular circumstances. In a second experi­
ment two further groups of users were tested, one of
which was provided with an overview of the hypertext
structure. This manipulation removed the disadvantage
demonstrated in Experiment 1. It is consluded· that while

422 Andrew F. Monk, Paul Walsh 8 Alan J. Dix

hypertext presents many new opportunities to the inter­
face designer, it also raises new problems. In particular,
the importance of providing an overview or map of the
hypertext structure is demonstrated.

Keywords: Hypertext, scrolling, folding, browsing, literate pro­
gramming.

1. Introduction

This paper presents two experiments which explore the use of hypertext.
A hypertext system for program browsing is compared with two alter­
natives schemes. A typical hypertext system is made up of screens or
windows containing 'hot spots'. Selecting one of these hot spots causes
some associated screen or window to be displayed. For example, one
screen may contain a diagram with labels describing its components.
The labels are hot spots. Moving the mouse cursor to one and clicking
causes a screen of text expanding the description to be displayed. This
screen may also contain keywords which are also hot spots.

Hypertext has been used for teaching (Hammond & Allinson [1988];
Yankelovich, Meyrowitz & Dam [1985]), authoring (Halasz, Moran &
Trigg [1987]; Trigg & Weiser [1986]), and programming (Kuo et al.
[1986]). There is also the multi-purpose information system ZOG
(Akscyn, McCracken & Yoder [1987]). The salient feature of these
applications jg that they present the user with a physical realization of
the conceptual links which can only be symbolized in conventional text.
For example, this paper has a hierarchical structure as indicated by the
section headings and subheadings, however, that conceptual structure is
symbolically rather than physically realized in its printed form.

With printed material and most text editors the underlying object
manipulated by the user has a serial or sequential structure. Thus, page
one is followed by page two, line one is followed by line two and so on.
Hypertext permits the use of hierarchies or any other form of/connected
network to access related material within the system. Further, if the links
between screens can be of different types then it is possible to impose
alternative structures on an object. For example, the multimedia system
described by Yankelovich et al (Yankelovich, Meyrowitz & Dam [1985]).
envisages an arrangement where the teacher provided a large data base
of linked information. The student may then build a new set of links
onto the same screens providing a novel perspective onto the materiaL

While a number of the papers referenced above discuss the advantages
and disadvantages of hypertext systems there has been little systematic

A Comparison of Hypertext, Scrolling and Folding 423

empirical work comparing the usability of hypertext with the alter­
natives. This is unfortunate, not because it is possible to do the
definitive experiment showing that hypertext is better or worse than
some alternative, but because systematic empirical study is the most
effective way of gaining insights about how to design good systems.

2. The Vehicle for Experimentation

2.1. Literate Programming

The experiments to be described in the next section evaluate a hypertext
browsing system in comparison with two alternative browsing schemes.
Each browser operates on the same material. With the hypertext system
the user is 'constrained to follow a network of links representing one way
the information might be structured. In the other two browsers the user
operates on a more conventional sequential information structure. The
problem area chosen was browsers for literate programs (Knuth [1984]).

Knuth's idea is that computer programs should be regarded as works
of literature, in which the software author strives for a program that is
comprehensible because its concepts have been introduced in an order
that is hest for human understanding. To do this a literate program
has two additional layers of structure above the procedural and data
flow structures provided by the programming language. First there is a
sequential structure. The program is divided into numbered sections and
the order of these sections is chosen to explain the program as a simple
expository sequence. The second layer of structure is hierarchical. The
program is divided into sections which may luse' other sections. This
gives the author a mechanism, additional to the procedural structure
of the programming language, to conceal inessential detail at each
level of exposition (for a detailed discussion and evaluation of literate
programming see (Thimbleby [1986]). A literate program is convenient
for our purposes as it can have these different structures imposed on it.

In the experiments described in the next section users are asked to answer
questions about a program. -Each section in that program ends with a
statement of in what section the current section is used, which sections it
uses and, where global variables and constants are declared, a Isee also'
referring to all the other sections where global variahles and constants
are declared. This indexing information forms the hasis of the hypertext
structure used in these experiments. These section numbers are Ihot
spots'. Users can move from one section to another which uses it or to
a section which it uses by selecting one of these numbers. Alternatively,
users can move from one section to another "referred to in the Isee also'
information. This hypertext browser is compared with two browsers

424 Andrew F. Monk, Paul Walsh & Alan 1. Dix

based on a sequential model of the documented program as it might be
printed out. One uses scrolling to view the document, the other folding.

SECTION: Th(' program body 4
TEXT.
A plan of attack ;- After the user has specified M and N~ we compute
the sarnpl(' by fono'w'ing a 9E'Mral procedure recommended in the
original problem statement. '
COOE.

<Establish the values of M and N 6> ;
size := 0 ;
<Initialize Ordered Hash Table 7> ;

...... hile size (M do
begin T := rand_lnt (1. N) ;

<1fT is not in table-, insert it and incf""('ase- size 9>
('od;

<Print the elemt'nts in tabl(' in sorted order 11)
<Mort- global variabltos 5>

USED IN SECTIONS
I

SEE ALSO

SECTION: If T is not in table I insert it and increase size-. 9

NoW' 'tie come to the interesting part, where the algorithm trie-s to
insert T into an ordered hash table. Tlw hash addr~ss H=[2M(T-l
is us~d as a starting pointJ sinc~ this quantity is monotonic and
almost uniformly distributed in the ,.an9~ 0 (= H < 2M.

H := trunc (alpha '* (T-l»;
whi1~ hahs rH]) T dO'

if H=O then H := maxH ~1se H := H-1 ;
if hash[H] < T then {T is nQt present}

b~9in siz~ := size + 1 ;
(!ns~rl T intO' the- ordered hash table 10)

end;

USED IN SECTIONS
4

SEE ALSO

Figure 1. The Hypertext Browser. The user has opened
section 9 by clicking on that number in the
indexing information for section 4

A Compari,on of Hypertext, Scrolling and Folding 425

2.2. The Hypertext Browser.

Figure 1 illustrates what a user of the Hypertext Browser might see
at some point in time. Positioning the mouse pointer on a number
in the indexing information for a section and clicking has the effect of
overwriting the text in the other window with the chosen section. Since
clicking in one window always causes the material in the other window
to be replaced by a new choice there are never more than two sections
displayed and there is no need for the concept, commonly found in multi­
window environments, of an "active window'. If the section selected is
already displayed then the system beeps to indicate that no change will
be visible. Each window is 24 lines deep and so would accommodate the
largest section .

2.3. The Scrolling Browser.

The implied user model of the object being inspected in this case is the
more conventional sequential one. The user is to imagine that they are
inspecting a continuous document. The text in the Scrolling Browser is
displayed in a single window (Figure 2). To make it comparable with the
Hypertext Browser the window is large enough to display two sections
(48 lines). Along the top of this window there is a thumb bar. Clicking
in the thumb bar will scroll to the appropriate point in the program. In
addition there is a second small window containing an up and a down
arrow at the bottom right of the screen which we shall refer to as the
scroll box. Clicking on the up arrow scrolls up 30 lines Le., the text moves
up relative to the window. Clicking on the down arrow cause~ the text
to move down. Thus the user has a choice of navigation strategy with
the Scrolling Browser. They can either (a) position the mouse pointer
in a portion of the scroll box and click to scroll forward$ or backwards,
or (b) they can position the mouse pointer at a point on the thumb bar
and click to scroll forwards to that portion of the text.

2.4. The Folding Browser.
,

The Folding Browser also has an implied user model which is a single
sequential document. Initially there is a single window containing the
twelve section titles and below them a grey portion of free space. The
user browses sections by positioning the mouse pointer on the section
title and clicking. The section is partly unfolded to reveal holophrasts
for the 'Text' and the 'Code' subsections, plus the indexing information
for that section. The action of unfolding causes the text window to
encroach upon the free space slightly. The user can continue the
operation of unfolding information by pointing to either the text or
the code holophrast and clicking. This unfolds the chosen subsection

426 Andrew F. Monk, Paul Walsh fj Alan J. Dix

SECTION: Th~ random number gem-ration proeedur~ 3

'y/~ usum~ th~ eXlstance of a system rOlJtine called r<lt'Id_int. (i,j)
that returns a random integer chosen uniformly in the rangE'
I. ... J.

f'ul\Ction rand_tot 0, j : integer) : integer; extt'rn;

USES SECTIONS
1

USED IN SECTIONS SEE ALSO

SECTION: The program body 4

/la plan of atbck :- Aft~ the user has specified M and N, we compute
th .. sample by fonowing a general proctdurfo r"eommended in the
Griginal problem sbtemMlt.

<Establish the values of M and N 6> ;
size := 0 ;
<It\itializ:e. Ordered Hash Table 7> ;
'While size < H do

be-91n T ="" ranLtnt (1 ,N) ;
<If T is not in table, insert it and incruse size 9>

Md;
<Print 'the- elements in bible in sorted order 11)
<Mort' global v.ll""iables 5>

USES SECTIONS
567911

USED IN SECTIONS
1

SEE ALSO

I

Figure 2. The Scrolling Browser

and further encroaches upon the free space (see Figure 3). When the
free space is exhausted (about two sections or 50 lines unfolded) further
unfolding actions result in an error message which takes the form of a
beep. The user is now obliged to fold away some of the information in
order to release free space. This is done in the same way as unfolding~
by pOSitioning the pointer and clicking. If the object chosen is the text
or code holophrast that subsection is folded away. If the user clicks on

A Comparison of Hypertext, Scrolling and Folding 427

the section title the entire section is folded away. The user can fold away
sections in an unfolded or partly-folded state, then when that section is
next unfolded it will appear as it was before section folding took place.

Table 1. Program comprehension questions

1. Only one section has input and output statements in it. Which
is it? (Find its number)

2. Only two sections (other than that above) have writeln state­
ments in them. Which are they? (Give their numbers)

3. What checks are carried out on input from the user? (Specify
boolean expressions involved).

4. Where is T declared? (Give section number)

5. Where is T first assigned a value? (Give section number)

6. What is T? (Give a few words of explanation)

7. What is the maximum value taken by the variable Size?

8. Where is Size incremented? (Give section number)

9. How big is the hash table?

10. What is the value of alpha? (Give an expression)

11. 11. What does alpha represent? (Give a few words of expla­
nation)

12. T is the new candidate for insertion. Which section contains
the code which detects whether T has already been inserted or

> not?

13. What causes the insertion process to stop? (Specify the
boolean expression involved)

14. There are two cases considered when printing the results: the
case where 'wraparound' has occurred and the case where it
has not. What hoolean condition shows whether wraparound
has occurred?

15. In what two sections of code does this wraparound occur, that
is wraparound in the insertion process, not wraparound in
printing out the hash table? (Give section numbers and the
relevant lines of code).

3. Experiment 1

3.1. Method

A short program, written by Knuth (Bently [1986]) to demonstrate the

~

- (it

428 AndTf'?1l F. Alonk, Panl Walsh f:J Alan .!. Dix

SECTION: Thp Program 1
SECTION Global var-i.lOle-s and const.ants 2
SECTiON: The- random I'IlJrnbE't'" 9i'I'Ii'ntion proci'dur" 3
SECTION: The pro9r-am body 4
TEXT.
A plall of aUack :- After the ustor has: spE'clfiE'd M and N, we- computE'
the sampli' by following a geMral procedure- recommended in the
original pr-ablE-m statement.
USES SECTIONS USED IN SECTIONS SEE ALSO
S· 6 7 9 11

SECTION: More global vari<lbles 5
SECTION: Establish the valui'S of M and N 6
SECTION; Initialize Ordere-d Hash Table 7
SECTION: Declare and initialise associated vari<lbles 8
SECTION: 1fT is not in table; insert it al'ld increase sizE'. 9
TEXT.
CODE.

H ;= {nme (alpha * (T-1));
..... hile hahs [H] > T do

ifH=Q thE'1'I H := maxH elsE' H ;= H-1;
if hash[H] < T then {T is not pre-s:ent}

begin size := siz.E' + 1 ;
<Insert T into the ordered hash table 10>

E'nd;
USES SECTIONS USED IN SECT IONS SEE ALSO

10 4
SECTION: Insert T into tht' ordered hash table 10
SECTION: Print the elements in sorted ordE'r 11
SECTION: Print hen- therE' 15 raparound 12

Figure 3. The Folding Browser. The user has unfolded
the text portion of section 4 and the code
portion of section 9

A Comparison of Hypertext, Scrolling and Folding 429

key features of literate progra.mming, wa.<> adapted for the purposes of
thi:::> experiment. The original program i~ reported in (Bently [1986J).
Changes madp were to achieve a reasonahle degree of equivalence be­
tween the three browsing schemes and t.o adapt Knuth '::; Pascal-lik~'

nota.tion to the dialect of Pa .. ';.;ca.l our m,<'fS were familiar with. Fifteen
questions about this program, of incrcll,,,ing difficulty, were devised for
the users to a.nswer (see Table 1). The users tested were thirty com­
puter scienc(> undergraduates of at least one year's Pascal programming
experience. The program uses an ordered hash table. T:p.ese students
were familiar with the idea of Cl hash table but had not seen this way of
using onc before. None were experienced users of mouse-based systems.
To a.void any carry over effects which might have arisen if the same
individual was trained to use all three browsers a between subjects
design was used. Ten users were alloca.ted to each browser condition
on a random basis.

After reading some instructions about the aims and methods of literate
programming the users were introduced to the browser they were going
to work with by means of a practice program. They then worked through
the fifteen questions using the browser on the program described above.
When the user obtained the answer to a question, they were instructed
to tell the experimenter. The answer was recorded, but no feedback was
offered. The results described below were extracted from a time stamped
log generated by the system for each user.

3.2. Results

Performance data is provided in Table 2. All three groups correctly solve
most of the tasks set. The rate at which the 15 tasks were performed is
also given in Ta.ble 2. The original measurement in seconds was trans­
formed to tasks per hour in order to make it more suitable for parametric
statistical tests. The comparisons of interest are Hypertext vs. Scrolling
and Hypertext vs. Folding. The former comparison can be shown to
be significant (p < 0.05) but the latter is not (analysis of variance
follow{..'(i by Dunn '8 test for two non-orthogonal planned comparisons
gives the minimum difference which would be significant as 17.45 tasks
per hour).

The advantage experienced by the Scrolling group over the Hypertext
group i~ surprising Cl.<; examination of system logs indicates that the two
groups behave in very similar ways. If the Scrolling group had basically
followed t.he sequential expository structure. which is after all one. of
the major features of literate programrning1 then one could see how the
Hypertext group might be a.t a disadvantage because this strategy is
not. available to them. In fact, both groups rely very heavily on the
'us{'s/uspd in' liuks which are the ba.si:-: of tIH-' h~'pertext structure. This is

430 Andrew F. Monk, Paul Walsh (1 Alan J. Dix

Table 2. Mean performance data for Experiments 1
and 2 (standard deviations in brackets)

Tasks Correct Tasks per hour

Experiment 1

Hypertext
Scrolling
Folding

Experiment 2

Hypertext with map
Hypertext with list

(out of 15)

13.5 (.93)
13.2 (1.2)
13.1 (1.1)

13.7 (1.3)
13.3 (1.7)

49.2 (13.9)
6S.1 (21.0)
56.7 (12.9)

69.1 (25.S)
51.S (I1.S)

Table 3.
Hypertext
Scrolling
Folding

Percentage recall of 'Uses' / 'Used in' links
73
67
46

perhaps best illustrated in some recall data collected after the users had
completed the program comprehension tasks. Each user was given the
numbered section titles and asked to indicate which other sections were
referenced in each Le., to recall the hierarchical part of the hypertext
structure. Mean percentage recall scores are given in Table 3. It can
be seen that the hypertext group recall nearly three quarters of this
information and the scrolling group do nearly as well. Clearly these
two groups are paying equal attention to this part of the hypertext
structure. Interestingly the folding group recall less, indicating that they
were navigating through the program in some other way.

The different browsers constrain which sections can be simultaneously
visible in different ways. The Scrolling Browser constrains a user to
viewing sequentially adjacent sections. A user of the Hypertext Browser
can only view sections which are adjacent in the hypertext space Le.,
each of the two sections displayed must have a reference to the other
in its 'uses" 'used in' or 'see also' indexing information. A user of the
Folding Browser is unconstrained as to what sections are open at the
same time. There are also different constraints upon the way a user
can move about the program. It might be thought that the Hypertext
Browser will require many more operations to reach some required state
than the Scrolling or Folding Browsers. This is not true because the
'uses' j'used by' hierarchy is very shallow and in addition there are the
'see also' links. Figure 4 presents a map of the hypertext structure.
47% of the changes needed to open some arbitrary section, given some
arbitrary screen state can be achieved in one i.e., clicking on one number.
85% can be achieved in 2 and in only one case (opening Section 12
when 2 and 10 already opened) does it take 4. Of course in practice

A Comparison of Hypertext, Scrolling and Folding 431

the transitions a user will want to make will depend on the particular
strategy used to solve the task in hand.

n..c. ~Wm. ~m.\oCI'"
cMntio:Q. trocc3l!n 3

Figure 4. The 'uses/used in' hierarchy. There are also
'see also' links between sections 2, 5, 7 and 10

The better performance of the Scrolling Group when compared to the
Hypertext Group could be explained in terms of these constralnts. Either
they impose a cognitive overhead on users resulting in generally less
efficient behavior or, more trivially, the constraints simply mean that
users have to engage in more system activity and the extra time taken
to perform the tasks can be explained as necessary additional system
response time. This latter explanation can be rejected. First, there
is no evidence that the Hypertext Browser forces users into additional
system activity. The system produced a time stamped record of user
actions. This log was processed into a log of section visits. The smallest
of the 'sections visited' scores in each group gives an indication of the
minimum number of visits necessary to complete the fifteen tasks. This

432 Andrew F. Monk, Paul Walsh <3 Alan J. Di:J;

was 27 and 22 for the Hypertext and Scrolling Groups respectively. For
a difference of five transactions to explain the observed time difference
of 323 seconds implies a system response time of around one minute
per transaction! We have to conclude that the Hypertext Browser is
interfering with the performance of its user in SOme more subtle way.

Perhaps the major difference between the Hypertext and Scrolling
browsers is that the latter allows random access to the sections. Al­
though we have ruled out the possibility that the results could be
explained by the additional system response time engendered when a
transition requires one or two intermediate actions to complete, there
may be cognitive overheads. It is possible that the additional mental
work required to complete the transition distracts the user from the
main task of program comprehension and results in generally less efficient
behavior. The Hypertext and Scrolling Browsers would have been much
more equivalent if the thumb bar for the Scrolling Browser had an
equivalent in the Hypertext Browser. This might have been a map of the
hypertext structure like Figure 4. Clicking on some node in this diagram
would display the corresponding section. It was not practical to generate
such a radically different system for the purposes of these experiments.
However, the hypothesis was tested by reducing the cognitive effort
needed to make transitions within the hypertext structure by providing a
non-interactive map of the structure. That is the hasis of Experiment 2.

4. Experiment 2 hypertext browsing with and
without a map

4.1. Method

The Hypertext Browser was used with two further groups of subjects.
One had a printed map of the hypertext structure displayed prominently
to one side of the screen. This this gave the ~uses/used by' indexing
i9formation in the same form as Figure 4. This map includes the
section titles and so to control for the possibility that this information
alone might explain any observed improvement in performance a second
control condition was introduced. This second group of 10 users had a
printed list of the 12 section headings. There were twenty subjects, none
of whom had participated in the first experiment.

The hierarchical map and the list of titles were introduced to the subjects
as memory aids that could help them remember where information could
be found. Otherwise, the present experiment proceeded in an identical
fashion to the first.

A Comparison of Hypertext, Scrolling and Folding 433

4.2. Results

Table 2 includes the results of Experiment 2. Comparing the two new
hypertext groups with the original in Experiment 1 we see that the rate
of performance is very much improved with the addition of a map but
that providing the section titles without any indication of the hypertext
structure has very little effect. The former difference can be shown
to be significant. Analysis of variance of the complete data set for
Experiments 1 and 2 followed by Dunn's test for four non-orthogonal
planned comparisons shows that the minimum difference which would
be significant is 19.35 tasks per hour. The group with a map also visit
fewer sections but this is not significant (F(4,45) = 1.34, n.s.)

It would seem that providing a map or 'overview)) to use the terminology
of the Notecards system (Halasz, Moran & Trigg [1987]), is of crucial
importance. An interactive map, allowing direct access to a section
anywhere in the hypertext structure, might have improved performance
still further. Without any kind of overview the cognitive effort required
to navigate the hypertext network may outweigh the advantages of
providing a non-linear text structure conforming to the demands of the
task.

5. Conclusions

It would be quite wrong to conclude, on the basis of the results from
Experiment 1, that hypertext will always be more difficult to use than
the ruternatives. Clearly the generality of anyone experiment is limited
to the tasks used, the user population sampled and the precise nature
of the alternatives compared. The performance difference observed in
Experiment 1 is interesting because it stimulated further exploration of
the use of these browsers. Study of the behavior of users in the scrolling
group of Experiment 1 demonstrated the salience of the 'uses/used
in' links between sections, thus showing that the links the hypertext
structure is based on are the important ones for users doing these tasks.

The final conclusion, that finding your way about a hypertext structure
may distract from the primary task, in this case program comprehen­
sion) may be much more generalisable. With a hypertext structure of
only 12 sections, providing a map resulted in a 25% improvement in
performance. The improvement could be very considerable with large
hypertext structures.

Hypertext provides exciting new ways of structuring information but it
should be remembered that there are already well understood ways for
communicating non-linear conceptual structures in conventional linear
text (e.g., section headings and subheadings, forward references and so

I

~;

434 Andrew F. Monk, Paul Walsh & Alan J. Dix

on). While hypertext presents the designer with many new ways of
helping the user, it also presents a whole new range of problems for
the user and designer to solve. These problems will only come to light
through systematic empirical work looking at the behavior ef the users
of hypertext systems. This paper is a start in that direction.

Acknowledgement

I am gratefnl to members of the Human-Computer Interaction Group at
York who have commented on drafts of this paper, particularly Harold
Thimbleby. The work was supported by the U.K. Alvey Directorate
through grant GRID 10231. 7. A fuller report can be obtained by writing
to the first author.

References

R M Akscyn, D L McCracksn & E Yoder [November 1987], "KMS: A
Distributed Hypermedia System for Managing Knowledge in
Organizations," in Proceedings of HyperTEXT '87, Chapel Hill,
North Carolina, 1-20.

J Bently [1986J, "Programming Pearls: Literate Programming," Commu­
nications of the ACM 29, 364-369.

F G Halasz, T P Moran & RH Trigg[1987J, "Notecards in a Nutshell,"
in CHI + Cl Conference '87, ACM, Toronto Canada.

N V Hammond & L Allinson [1988J, "Development and Evaluation of a
CAL System for Non-Formal Domains: The Hitch-Hikers Guide
to Cognition," Computers and Education 12, 215-220.

D E Knuth [1984J, "Literate Programming," The Computer Journal 27,
97-111.

J H C Kuo, K J Leslie, M D Maggio, B G Moore & H C Tu [1986J,
"Information Structuring for Software Environ~ents," in Ad­
vanced Programming Environments, G Goos and J Hartm, ed..,
Springer-Verlag.

H Thimbleby [1986], "Experiences of 'Literate Programming' Using
CWEB (a variant of Knuth's WEB)," The Computer Journal
29, 201-211.

RH Trigg & M Weiser [1986J, "TEXTNET: A Network Based Approach
to Text Handling," ACM TI-ans. OI84, 1-23.

A Comparison of Hypertext, Scrolling and Folding 435

N Yankelovich, N Meyrowitz & A van Dam [1985J, "Reading and Writing
the Electronic Book," IEEE Computer.

