
this chapter appeared as:
'Chapter 2 Formal Methods' in Perspectives on HCI: Diverse Approaches,
eds. A. Monk and N. Gilbert. London, Academic Press. 1995. pp. 9-43

Formal methods
an introduction to and overview of the
use of formal methods within HCI

Alan J. Dix

abstract

This chapter appeared in Andrew Monk and Nigel Gilbert's
collection "Perspectives on HCI". This book contains chapters from
experts in a variety of disciplines contributing to HCI. This
chapter is about the use of formal methods in HCI.

The chapter is organised around three major uses of formalism
within HCI:

¥ Specification of individual interactive systems
notations to describe the intended interactive behaviour of
specific systems

¥ Generic models of interactive systems
models that allow reasoning about broad properties such as
the meaning of undo

¥ Dialogue specification and analysis
notations, often diagrammatic, for describing the navigational
or dialogue structure of applications

The chapter is written assuming a broad audience and the small
amount of set and function notation used within it is explained
within the chapter.

Chapter 2 Formal Methods Perspectives on HCI

Table of Contents

Chapter 2 Formal methods.. 1
2.1 Introduction ... 1

2.1.1 Why use formal methods .. 1
2.1.2 Uses of formal methods ... 2

Specification of individual interactive systems 2
Generic models of interactive systems ... 2
Dialogue specification and analysis .. 2

2.1.3 What is formal anyway? .. 3
2.2 The language of mathematics ... 4

2.2.1 Sets and other collections .. 5
2.2.2 Functions and relations ... 8
2.2.3 States and operations ... 10
2.2.4 Specialist notations ... 13

2.3 Generic models of interaction ... 15
2.3.1 The PIE ... 15
2.3.2 Undo ... 18

2.4 Dialogue analysis .. 22
2.4.1 Notations.. 22
2.4.2 Why do people use dialogue notations? 24

UIMS .. 24
Paper specification ... 24
Prototyping ... 26

2.4.3 Dialogue properties.. 27
2.4.4 Example Ð digital watch .. 29

UserÕs documentation ... 29
DesignerÕs documentation.. 30

2.4.5 Example Ð dangerous states .. 31
2.5 Summary .. 32
Further reading ... 34

General .. 34
Formal models of interaction and specification 34
Undo .. 35
Dialogue .. 35

References ... 36

this chapter appeared in:
Perspectives on HCI: Diverse Approaches,
eds. A. Monk and N. Gilbert. London, Academic Press. 1995. pp. 9-43

Chapter 2

Formal methods

Alan J. Dix

2.1 Introduction
For many years I have worked on the interplay between formal
methods and humanÐcomputer interaction. This area of research
originated with (present and past) workers from York, but over the
last few years there have been several international workshops on the
subject and there are now several books on aspects of this area. For
further reading in the area the interested reader can consult the
chapters on Dialogue and Formal Methods in (Dix et al., 1993), my
previous monograph (Dix, 1991) and the collection (Harrison and
Thimbleby, 1990).

2.1.1 Why use formal methods?

Formal notations and mathematics are used in several areas of
humanÐcomputer interaction, including cognitive modelling and task
analysis. However, this chapter will focus on those more connected
with the engineering and analysis of interactive systems. These
notations all try to abstract away from the way the system is
programmed, but still be precise about some aspect of its behaviour.
Of course, an informal description does the same, but with a formal
description you can (in theory) say precisely whether or not a real
system satisfies the description. Because of this, one can perform
precise analyses on the description itself, knowing that any
conclusions one comes to will be true of the real system.

One value of this precision is that it exposes design decisions which
otherwise might not be noticed until the system is being
implemented. It is clear in many systems that obscure interface
behaviour could not have been designed that way, but has occurred
as the result of some programming decision. The specification of an
interactive system should not determine the algorithms and data
structures used to build the system Ð that is the proper domain of the
programmer. But, it should describe precisely the behaviour of the

2 Perspectives on HCI

system Ð the programmer may not be qualified to make such
decisions and the level of commitment at the time that the issue is
uncovered may mean that the design choice has been determined by
foregoing implementation choices.

2.1.2 Uses of formal methods

We will consider three major strands of formal methods, each of
which fulfils a different purpose:

Specification of individual interactive systems

This usually concentrates on a specific system and the complete
specification of all aspects of its behaviour. Its purpose is to clarify
design decisions, to expose inconsistency and to act as a ÔcontractÕ
with the implementor. User interface software can be extremely
complex and so being able to deal with it at a more abstract level is
even more important than for general software.

Generic models of interactive systems

The second strand models classes of system, for example, one might
have a general model of window managers as opposed to a specific
model of the Macintosh window manager. Their purpose is to give
new insight into general problems as the properties of the problem
domain are analysed. For example, we will see later how general
questions about the meaning of the undo command can be addressed
without recourse to a specific system. In addition, they can be used as
part of a formal development process to constrain the design of
specific systems. That is, results of the analysis of generic models can
be applied to formal specifications of specific systems.

Dialogue specification and analysis

Finally, dialogue notations are again used to describe specific
systems, but at a different level of detail than a full formal
specification. They concern the steps of the user interaction but
typically do not fully specify the meaning attached to the userÕs
actions. For example, the dialogue specification of a graphics editor
may say that the user must always enter two positions (by mouse
clicks) after selecting the Ôdraw lineÕ icon. However, it will not say
that a line appears in the screen, except perhaps by way of informal
annotation. Dialogue notations are used for various reasons, but this
chapter will emphasise the way the formal element in the dialogue
can be analysed in order to expose potential user interface problems.

Formal methods 3

2.1.3 What is formal anyway?

Of these three strands, dialogue specification is perhaps least
mathematical, but most easily used by the non-formalist. Indeed,
although formal methods can be extremely powerful they do require
a high-level of expertise. Most computing courses now include some
element of formal methods and so the level of formal expertise will
increase in coming years. However, it is unlikely that there will ever
be a large community of people expert in both human factors and
formal methods.

This suggests that formal methods need to packaged so that non-
experts can get some of the benefits without negotiating the steep
learning curve. One way this can be achieved is through Ôengineering
levelÕ notations which have formal underpinnings, but where
simplified analysis and heuristics can be applied. This is as in other
disciplines where the practising engineer does not use the theoretical
methods and analyses directly, but instead more pragmatic and
approximate versions of them. In the user interface domain, dialogue
notations are one example of an engineering level notation and are
amenable to both simple hand analysis and automated tool support.
The fact that many dialogue notations have a graphical form also
makes them more palatable! Another example of an engineering level
notation is status/event analysis which uses simple timeline diagrams
together with design heuristics based on a combination of formal
analysis and na�ve psychology (Dix, 1991, Ch. 10, Dix, 1992, Dix et al.,
1993, Ch. 9).

Sometimes the benefits of formal analysis can be presented
informally. For example, a purist might argue that an undo button
should always undo the effects of the last command Ñ even if the last
command was itself undo. However, we shall see later that this is in
fact impossible, thus removing the cause of long arguments and
allowing more constructive debate over the purpose of undo. Not
only can we state the result Ôit is impossibleÕ in this case the formal
proof can be rendered in a reasonably informal, but convincing
manner Ñ which is as well as no-one ever believes the result!

Of course, we can all recognise a bit of formal notation Ð simply
watch out for the λ∀∃ ! However, you will find that the dialogue
notations are mostly diagrammatic. Can a graphical notation be
formal? In fact, a diagram can be formal, informal or somewhere in
between, depending on the meaning which s attached to the elements
of the diagram. This is obvious when we think of an engineering
diagram. When it says that the diameter of a rod is 13.7 mm it means
precisely that! The dialogue notations discussed in this chapter will
be semi-formal in that they have textual annotations on the diagrams
which require informal interpretation. However, the structure of the
diagrams will be perfectly formal and capable of formal analysis. The

4 Perspectives on HCI

counterside of this also needs to be considered. Just because a paper
is filled with Greek and upside down letters doesnÕt mean it is formal!

Any formal notation abstracts in some way. In being very precise
about some things it completely ignores others. The important thing
is to be aware of what is being abstracted and whether the abstraction
is appropriate for the purpose for which it is required.

In the next chapter a computer game is specified in Z, a particular
formal notation. It is thus an example of the first strand of formal
methods.1 In the rest of this chapter we will look at the other two
strands in more detail. We will begin with a short introduction to the
language and concepts used in formal methods.

2.2 The language of mathematics
The notations used for formal specification in computer science are
based on a few key concepts from mathematics. Mathematicians care
a lot about the meaning of these concepts, but are typically not
worried about the notation used. Indeed, for the same concept, say
the application of a function f to a value x one may see any of the
following notations (and probably more besides):

f(x)
f x
x f

As you see, even the order may change! Furthermore,
mathematicians will invent notations for specific purposes, even just
for one paper. A piece of mathematics is written for a human reader
(well a mathematician anyway) and all that matters is that it is
understood by the reader.

Computer science formalists are far more starchy. Different
notations exist for the same concepts, but one is normally expected to
stick to a particular notation and the proponents of essentially similar
notations can become quite tribal at times. The reason for this
stickling for notation is that computer science formalisms are written
against the background of computer programs where the reader is
not another human (or even a mathematician) but a computer. This
punctiliousness can be a pain when the notation seems a poor match
for the problem but has the advantage that automatic tools can help
to check some aspects of a specification.

Unfortunately, several aspects of interface design fit badly with the
standard notations and so several specific formalisms have been
developed aimed specifically at interface design. The advantage of

1In fact, the purpose will be to expose gneral architectural concepts and thus
also has aspects of the second strand.

Formal methods 5

such domain specific notations is that they can have features
specifically customised for interface design. However, each new
notation requires work in establishing its formal foundations and if
required the development of new support tools.

As a mathematician at heart, this chapter will try to not be too
heavy on new notation. Where there is a choice of symbol or notation
I will use those adopted in the Z notation (Spivy, 1992) which will
also be used in the next chapter. However, I will not follow Z
slavishly, especially where the Z notation becomes obscure and over-
complicated for the examples used here.

Mathematics is like a pyramid stood upon its head: there are a few
basic concepts forming the foundation and on these concepts are built
successive layers of abstraction. From counting coconuts one moves
to the use of numbers, to algebra (talking about numbers in general)
to various forms of number-like things and so on. Only the tip of this
pyramid is required to understand most formal specifications.

I will assume the reader is familiar with numbers (ordinary
numbers!) and with basic logic. I will use the following logical
symbols:

p ∧ q Ð logical and, also sometimes written p.q or p I q
p ∨ q Ð logical or, Ó Ó Ó p + q or p U q
¬ p Ð logical not, Ó Ó Ó p
p ⇒ q Ð p implies q Ó Ó Ó p ⊂ q

Logic is the glue that joins together mathematics, but the heart
upon which mathematics is based are sets and function. Upon these
virtually everything else is built.2 Many readers will be aware of some
set theory possibly from school days, so the following descriptions
may be familiar.

2.2.1 Sets and other collections

A set is a collection of things which is unordered and without repeats.
The simplest sets are finite ones, for example:

Primary = { red, green, blue }
Secondary = { blue, green, cyan, red, magenta, yellow }
Sea = { green, cyan, blue }

This says that Primary is a set with three elements, namely: red, green
and blue. we say that red, green and blue are members of Primary. This
is written red µ Primary, green µ Primary, etc. The second set, Secondary
is a set with six elements, those in Primary and in addition cyan,

2In fact, sets are sufficient on their own, but why save on shoe leather by
walking on your hands?

6 Perspectives on HCI

magenta and yellow. The third set, Sea consists of the palette one might
want for a sea-scape. Note that as sets are unordered we could have
written the elements in any way and had the same set:

Primary = { red, green, blue } = { green, red, blue }
= { blue, green, red } = …

In addition, as the set does not count repeats we can only have one
of each colour. If we wrote:

BlueSet = { blue, red, blue, green, blue }

this would be regarded as exactly the same as Primary, the repeated
blues are ignored. Alternatively, the definition of BlueSet might be
regarded as ill-formed.

As Secondary contains all the elements that Primary does, we say
that Secondary is a superset of Primary, or equivalently that Primary is a
subset of Secondary. This is written:

Secondary ⊃ Primary or equivalently Primary ⊂ Secondary

In addition, note that Sea ⊂ Secondary.

We can build new sets from existing ones. This is done using set
union (written U) which puts two sets together and intersection
(written I) which extracts those elements common to two sets. For
example:

Primary U Sea = { red, blue, green, cyan }
Primary I Sea = { blue, green }
Sea I Secondary = { blue, green, cyan }

Note that because Sea is a subset of Secondary the intersection of Sea
and Secondary is the same as Sea.

Not all sets are finite, for example the set of all natural numbers
(non-negative integers) or the set of all integers:

¯ = { 0, 1, 2, 3, 4, 5, … }
ı = { …, -3, -2, -1, 0, 1, 2, … }

Usually infinite sets represent something abstract, after all it is
difficult to really gather together an infinite collection of things. In
fact, as infinite sets go, the set of natural numbers is relatively small
and concrete.

Formal methods 7

In addition to sets it is sometimes useful to deal with bags which are
unordered, but do allow repeats and sequences which are both
ordered and have repeats.3 So, one can write:

BlueBag = œ blue, red, blue, green, blue “
= œ red, blue, blue, blue, green “
= œ green, blue, blue, red, blue “

You can think of a bag as precisely that, a sack containing things in
no particular order, but more of one thing than another. So BlueBag
contains three blues, one red and one green.

One can have a similar blue sequence:

BlueSeq = 〈 blue, red, blue, green, blue 〉

However, this time the order is important. A sequence is like a list
on a piece of paper. The first item on the list is ÔblueÕ, the second is
ÔredÕ, the third is ÔblueÕ again. So, if we swop the first two colours we
get a different sequence:

BlueSeq ≠ 〈 red, blue, blue, green, blue 〉

Similar to a sequence is a tuple. It too is an ordered collection.
However, the elements of sequences (and bags) all the same type of
thing, for example, BlueSeq consists solely of colours. A tuple may
contain different sorts of things. For example, if we wanted to
describe the colour an size of a dress, we might do so using a tuple:

dress = (red, 10)

When specifying systems, tuples will be used to describe the state
of a system in terms of its component parts. Often the components of
a tuple are given names, for example, we may want to talk about
dress.colour and dress.size. The notation for describing named tuples
varies more than most although the use of a dot to access components
is quite widespread.

I said that mathematics was like an inverted pyramid. We start
with sets of things and other sorts of collections. However, from these
one then goes on to talk about sets of sets, sets of sets of sets, É, not
to mention sets of sequences, sequences of sets etc.

Lets start with the set X = { x, y } . From this we can obtain ∏X, the
power set of X Ñ the set of all subsets of X , and seqX Ñ the set of all
finite sequences of elements of X .

3 You could also have a collection which is ordered but has no repeats, a sort of
prioritized set, Z calls this an injective sequence (iseq), but I have never found a
use for one!

8 Perspectives on HCI

∏ X & = & { {} , { x }, { y }, { x, y } }
seq X & = & { 〈〉 , 〈 x 〉, 〈 y 〉, 〈 x, x 〉, 〈 x, y 〉, 〈 y, x 〉, 〈 y, y 〉, 〈 x, x, x 〉, … }

Note that the power set of a finite set is also finite, but that the set
of all sequences is infinite. However, even with finite sets power sets
grow very rapidly in size and hence are used to describe problems
but are rarely actually computed within a program. Note also that the
empty set {} (also written ∅) is the set which contains nothing. It is a
subset of every set including itself.

We can also construct the set of all tuples using Cartesian product.
So, if A = { a, b } , the Cartesian product of A and X is the set of all
tuples whose first component is from A and whose second component
is from X: A×X = { (a,x), (a,y), (b,x), (b,y) } . Note especially that this
does not contain (x,a) Ñ which is a member of X×A. The set of all
dress styles could then be written as Styles = Primary × ø (recall that ø
was the set of all natural numbers). Of course, one could argue with
this as we may want to have dresses in non-primary colours. Also
some of the sizes in this set do not represent reasonable dresses (have
you ever seen a size 593 dress?). This is precisely the value of a formal
specification. Often this sort of decision is taken while a system is
being programmed rather than by the designer.

When a name is introduced in a specification it is usually given an
explicit type to say what sort of thing it refers to. For example, we
might introduce the name sty which is going to be a specific dress
style. This can be declared as:

sty : Primary×¯

This says that sty is some tuple consisting of a primary colour and a
natural number. A possible value of sty is then (green,8). Note the
difference between sty and Styles (defined above) Ñ Styles is the set of
all possible tuples whereas sty is one particular tuple. In fact we could
have used Styles as the type of sty:

sty : Styles.

2.2.2 Functions and relations

Functions are black boxes which given an element from one set return
an element of another. Most readers will have come across some
mathematical functions, for example, square the function which given
a real number (that is any number not just integers) returns its square,
e.g., square(1.5) = 2.25. The type of a function is shown using an arrow
and the function, for example the type of square might be ΩÊÝÊΩ, that
is it takes real numbers (Ω) to real numbers.

Formal methods 9

Often functions take several parameters and this is denoted using
the Cartesian product notation × which we saw earlier. For example:

mix : Primary × Primary › Secondary

says that mix is a function which given two primary colours returns
a secondary colour. For example, if mix is standard colour mixing (for
light rather than paint) we would have mix(red,green) = yellow.

If the sets involved are finite we can write out the function in full.
For example, mix can be defined in full by:

mix = { (red,red) fl red, (red,blue) fl magenta, (red,green) fl yellow,
(blue,red) fl magenta, (blue,blue) fl blue, (blue,green) fl cyan,
(green,red) fl yellow, (green,blue) fl cyan, (green,green) fl green }

Note that it is necessary to specify both mix(red,blue) and
mix(blue,red) as in general these need not be the same. For example,
subtraction (Ð) is a function of type Ω×ΩÝΩ, but 3Ð2 is not the same as
2Ð3.

In fact, expressing functions in full is the exception usually they are
described using some formula. For example, the function hypot might
return the length of the hypotenuse of a right-angled triangle given
the length of its two sides using PythagorasÕ formula:

hypot: Ω × Ω › Ω
hypot(a,b) = a2 + b2

Notice that the first line gives the type of hypot and the second line
its definition. Note also that a and b represent variables in the above
definition whereas in a statement like mix(blue,green) = cyan, the
colour names were constants. Specific notations have rules for
distinguishing these, but for this chapter I hope it will always be clear
from context.

Functions may not be defined for all values in which case they are
said to be partial as opposed to a total function which is defined for all
values of the given type. However, a function must always give the
same answer. So if we considered the set of all people mother would
be a reasonable function as everyone (new IVF developments not
withstanding) has a mother. However, daughter would not be a
function as not only does not everyone have a daughter (which
would simply make the function partial), but also some people have
more than one daughter so there is not a single result.

Obviously one wants to deal with relationships like daughter and
there are two effectively equivalent constructs for this. The first, in the
spirit of inverted pyramids, is to have a function daughters which

10 Perspectives on HCI

returns a set, so that the result of daughter is the set of daughters of a
person. If the person has no daughters the set is empty. For example,

daughters(Alan) = { Esther, Ruth }
daughters(Janet) = {}

That is Alan has two daughters, Esther and Ruth, Janet has none.
The other way to deal with the problem is using a relation. We

could have the relation daughter_of(c,p) which is true precisely when c
is the daughter of p. For example, using the same family relations as
above, both daughter_of(Esther,Alan) and daughter_of(Ruth,Alan) would
be true, but daughter_of(Janet,Alan), daughter_of(Ruth,Janet) and
daughter_of(Alan,Esther) would all be false. The type of a relation is
sometimes written using a double ended arrow:

daughter_of : Person ¢ Person

We have already seen a function yielding a set, that is daughters.
Its type can be written using the power set construction:

daughters : Person › ∏ Person
and yes, you guessed it, you can have sets of functions, functions
returning functions, sets of functions returning sets, ad infinitum!

2.2.3 States and operations

The most common use of formalism within computer science is to
define the possible states of a system and the operations which can
change that state. In other areas of computer science the part of the
state which involves the user interface is often ignored. For interface
design and analysis, we want to talk about everything that concerns
the interaction.

As an example, consider what you would need in the state of a
simple calculator. This of course depends very much on the particular
calculator, but would at least include: the number displayed, the
current running total, the operation about to be performed and
something to say whether the next digit will be added to the end of
the current number or replace it. Did you think of the last two? The
operation pending is needed because after typing Ô1 Õ, Ô+ Õ, Ô2 Õ the
calculator needs to remember that it must add 1 to 2 if you type Ô=Õ
next. The last part, the ÔtypingÕ flag is needed to tell whether typing a
Ô7Õ next will lead to Ô27 Õ being displayed (to be added to 1) or whether
the Ô2Õ will be replaced by Ô7Õ.

The state is changed by each user action. A specification will say
precisely how each part of the state is changed by each operation. For
example, the rule for typing a digit would be something like:

Formal methods 11

type_digit(d) if typing flag is true
then add d to the end of the number displayed

if it false
then clear the number displayed and set it to d

A typical trace of operations might proceed as follows:

user action running total display operation typing?

< start > 1 2 + yes

type_digit(7) 1 27 + yes

= 28 28 none no

– 28 28 – no

type_digit(3) 28 3 none yes

Notice how the effect of typing the Ô7 Õ and the Ô3 Õ are different
because of the typing flag.

The state of the calculator is a tuple, for example, the state just after
typing the Ô7Õ is:

(0, 28, +, yes)
The set of all states is therefore a Cartesian product:

CalculatorStates = ı × ı × Operation × Flag

and an operation can be regarded as a function from states to
states:

type_digit(7) : CalculatorStates › CalculatorStates

This function says how the states changes when the operation is
performed.

Often some parts of the state can be thought of as the underlying
application whereas other parts are to do with the process of
interaction. For example, the running total is obviously what one
really wants out of the calculator, whereas the typing flag is part of
the ephemera of interaction. Often the bits describing the interaction
are the most complicated Ð in order to make something that is simple
for the user, the system has to be complex.

When the system gets more complicated we donÕt want to have to
write the full state in one go. For example, a CAD package may have
the following state:

CADstates = MenuState × Selection × Drawing × Notes

The components may be named, so if cstate is a particular state of
the CAD system, we may be able to refer to cstate.menu, cstate.sel,

12 Perspectives on HCI

cstate.draw and cstate.note. The various sets MenuState etc. refer to
possibly complex sets representing parts of the state. For example,
Selection would have information regarding the currently selected
object in the drawing, and Drawing would record all the shapes and
lines which have been drawn. These would each be complicated sets
in their own right. A full specification notation makes it easy to define
these sets one by one and hence build up the whole specification. In
the next chapter, ZÕs structuring mechanism schemas are used to build
a complete specification.

In this example too we can see that some parts of the state,
cstate.draw and cstate.note correspond to the underlying application
and the rest cstate.menu and cstate.sel are the state of the interaction.

Note however, that this distinction is an area where authors of HCI
papers using formalism often appear confused. They begin to talk
(correctly) about the changes that happen to the system in terms of
transitions between states. However, at some point they want to refer
to the interaction component, but do so by talking of it as a subset of
the states. That is, the states are classified into interaction states and
application states. They basically say something like the following:

Istates ⊂ CADstates

Astates ⊂ CADstates

This is entirely wrong Ñ it is the components of the states which
can be classified. Think what they are saying, the set of states
represents possible snapshots of the system at any moment in time.
To classify the states would be to say that at some moment the system
had only interaction state or only application state. The latter is bad
enough, but if the former were true what would have become of all
your lovely drawing! Certainly the human-computer dialogue at any
moment may be concentrating more on surface interaction (e.g.,
menu manipulation) or deep interaction (e.g., invoking a structural
analysis), but the other components of the state are also present even
if unchanged.

Unfortunately, this is not simply a matter of the authors knowing
what they want but having trouble translating it accurately into the
formal notation. Personally, that wouldnÕt bother me too much so
long as the intent is clear Ñ and to be honest IÕve seen far worse in
papers on software engineering where formal methods is supposed to
be the central focus! However, there are occasionally points where the
errors represent a deeper confusion, not just about the mathematics,
but in the authorsÕ general thinking. I have several times seen pictures
similar to Figure 2.1, which exactly captures this idea that some of the
states (the black ones) are solely to do with the underlying
application and others (the white ones) are to do solely with
interaction.

Formal methods 13

application states interaction states

Figure 2.1 The WRONG way of thinking about state!

The confusion arises because at any moment of time one may be
able to divide up the state of the system into an interaction part and
an application part, which is in a sense looking at a ÔsubsetÕ of the
components. But this process is selection of components and is a
process of abstraction. If one wants to talk generically about the
relationship between the state of the system and the Ôinteraction stateÕ
one needs an abstraction function to obtain the relevant portion.

iabs: CADstate › MenuState × Selection

This difference between abstraction (only looking at some aspects
of things) and selection (only looking a some things) can be subtle,
but is important in both our formal and informal thinking.

2.2.4 Specialist notations

So far we have been talking about standard mathematics and the
specification in the next chapter will be in Z a general purpose
formalisms. However, there are also several special purpose notations
which can be useful for interface design. Notice the specifications
only considered either single states of the system or simple transitions
between states. It is slightly more complex to talk about sequences of
actions Ñ not impossible, for example, one can use sequences of
states to represent the history of an interaction, but certainly more
difficult. The dialogue notations discussed at the end of this chapter,
are aimed at the specification of the possible sequences of user
actions. However, they specify precisely what a system does, but are
not suited to describing constraints on the temporal behaviour.

Various forms of temporal and modal logics are better suited to this
and allow one to make statements like: Òit is always true that when

14 Perspectives on HCI

the user presses the ÔprintÕ button the document will eventually be
printedÓ. In temporal logic one can write this as:

 ❏ user presses ' print' ⇒ ◊ document is printed

The symbols ❏ and ◊ are read `always' and `eventually'
respectively. Note that `eventually' means precisely what it says, not
instantly, not even necessarily today, but É eventually. However,
there are stronger statements that can be made! Johnson (1992) has
made extensive use of temporal logic in specifying and prototyping
safety critical process control interfaces.

Special purpose interface notations usually involve some sort of
notation to talk about sequence of actions, but more often of the
dialogue notation rather than the temporal logic style. In addition,
such notations may allow the interface to be defined in terms of semi-
autonomous agents (Abowd, 1990, 1991). This corresponds more
closely to the object-oriented style of many interfaces, but has the
disadvantage of being more program-like.

I have been particularly involved in two areas where current
notations seem particularly weak. The first is in expressing properties
such as the dragging of an icon across a screen with a mouse. In the
style of specification used above, this would have to expressed as lots
of little mouse movement events which each change the state by a
little, and hence change the display. This description using small scale
events does not adequately reflect the fluid feel that such an action
has for the user. This is an example of a status-status mapping within
the interface, which reflects the variation of certain phenomena
between events. Effective notations to describe both event and status
phenomena is a current area of research (Dix, 1992).

The second area is in the description of asynchronous groupware.
The multi-user spreadsheet was an example of synchronous
groupware as the effects of one user's operations were assumed to be
instantly visible (if they happen to be on screen) to other users.
However, when network delays are considered there are always
small discrepancies between the state of the system at different users'
machines. In addition, some cooperating users may have machines
which are not permanently connected at all, communicating by email
or floppy disk transfer. Extensions to temporal logic are being
formulated to deal with such distributed applications (Dix 1994).

2.3 Generic models of interaction
We found ourselves in the last section beginning to discuss formal
properties of multi-user systems at quite an abstract level. We moved

Formal methods 15

from the discussion of shared spreadsheets to formulations of
properties which could apply to any system. The models we will look
at in this section are designed specifically for that purpose.

2.3.1 The PIE model

The simplest such model is the PIE model which was developed at
York nearly ten years ago (Dix and Runciman, 1985). The letters used
to denote various parts of the model are retained for historical
reasons (if I changed them the model would no longer be a PIE).
However, I wonÕt bother to quote all the full names which go with the
acronym as they now serve only to confuse.

The PIE model is based on a black-box model of an interactive
system. That is it does not look at the internal workings or structure
of the computer, merely at what goes in (user inputs) and what comes
out (the display and other outputs such as printed documents) (see
FigureÊ2.2).

Whereas the specification of the spreadsheet was constructed out of
various components, the PIE model does not look inside the systems
state and simply demands that there is some set E of states. Similarly,
it does not say what the display is like merely that there is some set D
of legal displays. The function giving the current display from the
current state is called display (happily not all the names are obscure).
The display is intended to cover any form of immediate output
whether visual or aural.

Figure 2.2 Inputs and outputs of single user system

The model distinguishes the display from the results of the
interaction, these are the outputs which persist beyond the
interaction, for example, the printed form of a document. However,
this is in a sense potential rather than actual, as there is always
assumed to be a result that you would get if you stopped the
interaction now. The set of such potential results is called R and is
obtained from the current state E by the function result.

16 Perspectives on HCI

These functions can be given mathematical types:

display: E › D
result: E › R

The users inputs are called commands. The model can be used at
various levels of granularity, for example, the commands may be
individual keystrokes, or may be similar to the operations on the
spreadsheet. In the case of a spreadsheet the set of commands C
would be something like:

C = { move_left, move_right, …, insert_col,
set_formula(‘A1+B2’), set_formula(‘57 ’), … }

Notice that operations like set_formula which required extra
parameters are transformed so that each instance is a separate
command. At the keystroke level the set of commands might be:

C = { ‘a’, ‘ b’, …, ‘0’, ‘1’, …, Ctrl_A, Ctrl_B, … }

The current state of the system is a function of the history of all
commands which have ever been entered. This command history is
called P and the function is called I.

P = seq C
I: P › E

This gives all the elements of the PIE model, depicted graphically
in Figure 2.3, É which looks rather like the original illustration.

Figure 2.3 The PIE model

One does not normally think of the state as being generated from
the history of user operations and specifications are not usually
written this way. Instead, one considers the state transition which
results from individual operations. The two views of interaction are
useful in describing different properties, and so we also define the
state transition function doit which says how a sequence of
commands alters the state:

Formal methods 17

doit: E × seq C › E

Given the transition function for individual commands one can
easily generate the transitions for longer sequences. For example, if a
and b are two commands, we can work out the effect of 〈a, b〉 on a
state s by:

doit(s, 〈a, b〉) = doit(doit(s, a) b)

The PIE model has been used to analyse a range of properties. One
of the first was the meaning of WYSIWYG Ñ Òwhat you see is what
you getÓ, and the structure of the model was to some extent oriented
towards this, representing the display Ñ what you see, and the result
Ñ what you get. Several variants formalising aspects of this have
been produced and details can be found in (Dix 1991). The basic
flavour of these properties is that there must be some relationship
allowing you to infer the current result from the display. The simplest
is to demand the existence of a function predict such that:

predict: D › R
Å s µ E ̂ predict (display (s)) = result(s)

LetÕs consider what this says in detail. The first line says that predict
is a function which from a display will give you a result. The second
line uses � (the universal quantifier), which is read as ÔforallÕ. It says
that if you consider any state s, take the display of that state and then
apply the predict function to that display, then the result you get is
exactly the same as if you had applied the result function directly.

In a very simple drawing package, a tracing of the screen would be
exactly the same as the printed drawing. The process of drawing is
effectively the predict function Ð you can predict the exact form of the
printed output from the display.

This particular formulation is rather strong as it says that you can
completely determine the result from the current display. This would
not allow the printing of off-screen information. For example,
imagine the drawing package had a larger drawing than would fit on
a screen, with scrollbars to move about it. At any moment, the display
would only show a part of the drawing and hence one could not
predict all of the printed form from the current display. In reality, one
would simply scroll back and forth over the picture in order to see it
all. Variants of this predictability property can capture this sort of
behaviour, but are slightly more complex.

Examining the limitations of formal properties, as we did above,
not only reveals problems with the formulation of the mathematics,
but also exposes real usability issues. For example, one of the early

18 Perspectives on HCI

attempts to extend the predictability property asked whether it was
possible to predict the result from all the possible displays which had
that result. This was meant to mimic the userÕs ability to scroll over
all of a document or drawing. However, an attempt to prove this over
very simple systems exposed a class of interface problems. In general,
you not only need to know what displays are possible, but which part
of the document they referred to. This problem we called aliasing Ð
you canÕt tell the identity of something from its content Ð and it arises
in a wide variety of contexts. For example, many early text editors did
not have a status line giving the current location. So, in a large file of
numerical data it was very easy to get lost. Although most modern
editors have scrollbars which show the location, these are severely
limited for very large documents. There are typically only a few
hundred pixels on the scrollbar, so, if the document has more lines
than this, the scrollbar only gives a general idea of where in the
document you are. Similar problems arise when, for example, two
copies of a document are made Ð if the name of document is not very
salient it is easy to change the wrong one!

Another set of properties concern reachability, that is what you can
do with the system and how hard (or impossible) it is to get from one
state to another. Undo is a special case of this as it concerns how one
gets to the previous state in an interaction.

2.3.2 Undo

It is widely agreed that user interfaces ought to include some sort of
undo facility. This not only allows recovery from errors, but gives the
user confidence to explore new parts of the system. There have been
several models of undo including various forms of redo (Archer et al.,
1984, Vitter, 1984, Yang, 1988}. However, we will only look at fairly
simple undo.

The basic requirement for an undo command is that it reverses the
effect of the previous command. In other words, if c is a command,
then the sequence c followed by undo has no effect. This can easily be
formalised in the PIE model:

Å s µ E ˆ doit(s, 〈 c , undo 〉) = s

That is whatever state, s, you start in performing c and then undo
leaves you in the original state.

Of course, for undo to be useful it must work on all commands.
Thimbleby (1990) tells the sad story of a paint program. It had an
undo button which worked for all simple cases (where it wasnÕt really
necessary). But, when one day he accidentally performed an area fill
which wiped out the whole picture, he found that the undo button
was disabled.

Formal methods 19

This suggests that the above formula should be true of any
command at all. This at once raises the issue of whether the undo
command itself is included Ñ that is, is undo undoable? The purist
would argue that for consistencies sake all commands should be
equal. Indeed, if one accidentally hit the undo button surely one
would like to be able to undo it. Furthermore, the undo button on
many systems appears to function in this way, if you hit it a second
time it restores the system to the state before the first undo. Or does
it? LetÕs look a little more closely.

Assume our system does indeed obey the undo property for all
commands including undo itself. Consider an arbitrary start state, call
it s0 and any two commands, say a and b. If we issue a from state s0

we would get to some new state of the system, call it sa whereas if we
had issued b we would have got to a state sb. However, from either
state the undo command should return us to state s0. This situation is
shown in FigureÊ2.4. Notice that whichever way you go round the
lozenge you get back to s0. The top and bottom path around it
represent different possible traces of user behaviour. But, what now
happens if the user enters a second undo? Looking at the top of the
lozenge, corresponding to the trace where the user entered a, the rule
that undo followed by undo has no effect would suggest that the
resulting state (denoted by Ò?Ó) is sa. However, if we look at the
bottom of the lozenge, we would conclude that the state is sb. So if our
system satisfies the undo property states sa and sb must be identical.
However, the commands a and b were not special, so whatever
commands the user enters in state s0 it always ends up in the same
state (call it s1). Of course, s0 was also an arbitrary start state, so the
system always does the same thing no matter what command the
user enters. Given that one of those commands, namely undo, always
returns one to the previous state, this implies that the system is either
a flip-flop, with only two states (rather boring) or has only one state
(i.e., it does nothing at all Ñ even more boring).

So

a

b

Sb

So

undo

undo

?
undo

Sa

Figure 2.4 Undoing undo

20 Perspectives on HCI

Perhaps you feel youÕve been hoodwinked by the formal argument.
Surely the above is just a limitation in the formalisation of the
problem. The diagram represented two possible ways the system
could be used, of course in reality only one could happen. LetÕs say it
was the top path, the user does a followed by two undos. Now when
the user performs the second undo, surely you might say, the system
knows the user did the action a and can thus redo it? But, if this were
the case, then the system would have to explicitly remember that a
had been done Ð and this knowledge would have to be in the state Ð
just as your memories are in the internal ÔstateÕ of your brain.
However, if the system were remembering the a after the first undo, it
could not be in the same state as it was at the start (s0). So, either the
first undo doesnÕt forget the a properly, or the second one canÕt
remember it in order to redo it! The formal argument is really just a
more precise and conclusive version of this argument. The nice thing
about the formal argument is that, once you have overcome the
hurdle of the formalism itself, it is particularly easy to discuss
different potential sequences of actions which get quite involved
when expressed textually.

So, in short, we can conclude that no reasonable system can ever
have an undo command that works uniformly for all commands
including itself. This is an extremely general and powerful result. It
means that one can stop trying to endlessly fix and refix algorithms
which attempt to obtain this impossible goal. Instead, one can
concentrate ones efforts on developing forms of undo which are both
achievable and useful.

If this is so, then what about those systems which appear to have
undoable undo? In fact, if you look carefully ÔappearÕ is the right
word. The way they work is more or less as follows. Imagine the
system without an undo command. It has some system state
associated with it. When the undo command is added to the system
the state is made more complex and effectively contains two
(different) copies of the original state. These correspond to the current
state and the last state. All the undo command does is to swop these
two copies. However, the effect of a normal command is effectively to
push out the old previous state and make a new current state. The
undo command does not reverse this process.

Notice that in this explanation there is a difference between the
state of the system that you normally think of, and the full state of the
system when we take the undo command into account. The undo
command reverses the effects on the former, not the latter. Like
version control and other history or auditing mechanisms undo is
best thought of as a meta-command that operates on a completely
different level.

Formal methods 21

As well as being able to study single-user undo it is also possible to
look at the meaning of undo in a multi-user context. One problem is
the meaning of undo when the user (say Alison) who issues the undo
command is not the same user (say Brian) who issued the last
command. Should AlisonÕs undo operate on BrianÕs command Ñ
called global undo, or on her own last command Ñ called local undo. In
most circumstances it is clearly local undo which the users will
expect. However, there may be some form of interference between
commands, so it is not clear when local undo is meaningful. A formal
analysis of multi-user undo (Abowd and Dix, 1992) has exposed
precisely those circumstances when local undo is possible and also
shown that there are circumstances when there is no sensible
meaning to it. This impasse acted as a spur to look more closely at
what undo is for, and hence a complete re-evaluation at an informal
as well as a formal level of what facilities ought to be offered for
undo.

The example of undo shows how useful formal models can be as
tools for understanding. The specification we originally gave for
undo sounded good enough, but was inconsistent. If we had tried to
build a system having such an undo, we would either fail, or think we
had succeeded. In the former case, we might keep fruitlessly trying to
build a system with a single universally applicable undo button. In
the latter, we might delude ourselves into thinking this was what we
had, only to discover (after selling the system!) that there were cases
where it failed.

22 Perspectives on HCI

2.4 Dialogue analysis
The difficulty about proving properties of systems is that the state is
very complex. For example, the state of a word processor will contain
information such as:

Screen: edit screen
Text: Òto be or not to be, ÉÓ
Menu: file menu displayed
Cursor: at the 7th character line 12

To be able to prove things about such a state, we need to reason
about numbers and text as well as mode indicators such as Screen
and Menu. The number of possible texts and cursor positions is
infinite, or even if we take into account system limits very large. This
means we have to reason symbolically Ñ heavy mathematics!

Dialogue descriptions usually limit themselves to the finite
attributes of the state. Those which have a major effect on the
allowable sequences of user actions. They are thus instantly more
amenable to automated analysis (we can sometimes simply try all
cases). Furthermore, dialogue descriptions are often used as part of
design anyway, thus we may be able to take an existing product of
the design process and obtain instant added value.

I said earlier that all formalisms abstract away some details in order
to emphasise and make precise others. Dialogue notations abstract
away most of the details of the system state in order to emphasise the
userÕs actions on the system and the order in which they can occur.

Even within dialogue notations there is some variation of level of
abstraction. Some deal with low level user events such as mouse
clicks and keystrokes, others deal with more abstract events such as
Ôenter login nameÕ. Also some dialogue notations do capture some
aspects of the state, especially those which are intended for
prototyping. However, in the latter notations the state description is
usually clearly separable from the ÔrealÕ dialogue description. More
normally the effects of userÕs actions on the system state is denoted by
textual annotations or by the use of meaningful names.

2.4.1 Notations

There are a large number of different dialogue notations. Some use
diagrammatic representations of the dialogue (see below) and others
use textual representations (such as the use of grammars or
production rules).

Formal methods 23

Of the diagrammatic techniques, state transition network (STNs) are
most heavily used. (But even they come in several variants.) We will
base our discussion primarily on STNs, but other notations could
equally be used.

State transition nets consist of two elements:

circles Ð denoting the states of the dialogue
arcs Ð between the circles, denoting the user actions/events

Start Menu

Circle 1 Circle 2 Finish

Line 1 Line 2 Finish

select 'circle'

select 'line'

click on centre
click on

circumference

draw circlerubber band

rubber band draw last
line

click on
first point double click

click on point

draw a line

Figure 2.5 State transition network for menu driven drawing tool

Figure 2.5 shows a STN describing a portion of the dialogue of a
simple drawing tool. The arcs are also labelled with the feedback or
system response resulting from the userÕs actions. Note how cramped
the arcs get Ñ obviously a lot is happening at each event.

The STN for a full system would usually be enormous. To manage
the complexity, STNs are often described hierarchically. For example,
FigureÊ2.5 shows the higher level dialogue for the drawing tool,
selecting between several sub-menus. The menu in FigureÊ2.5
corresponds to the graphics sub-menu. Each of the sub-menus would
have similar STNs describing them.

The hierarchical decomposition in this diagram is of states. Single
states in the high-level diagram correspond to an entire low-level
STN. There are other possibilities for hierarchical decomposition, for
example, augmented transition networks allow both user actions and
system responses to be decomposed into further STNs.

24 Perspectives on HCI

Graphics Sub-menu

Text Sub-menu

Paint Sub-menu

Main
Menu

select 'graphics'

select 'text'

select 'paint'

Figure 2.6 Hierarchical state transition network for complete drawing tool

2.4.2 Why do people use dialogue notations?

One advantage of performing formal analysis on dialogue
descriptions is that they often Ôcome for freeÕ, a natural product of the
design process. There are several reasons for this which weÕll look at
in turn.

UIMS

If we use a User Interface Management System (UIMS) or User
Interface Development Environment (UIDE) this will usually include
a formal description of the dialogue. This may be in the form of
production rules, a grammar or even some graphical representation.
Some of these representations, especially production rules, do not
completely separate the dialogue from the underlying state.
However, the conversion required is certainly far less work than
generating the description from scratch and is guaranteed to be
consistent with the actual system.

Paper specification

A second reason for the use of dialogue descriptions is simply as a
paper specification method, just as one might use data-flow diagrams
for information systems or entity-relationship diagrams for database
design. Several years ago I was working in a data processing
department producing information systems under a forms-based
transaction processing (TP) environment.

Formal methods 25

Programming a TP system is similar to many window systems,
basically a stimulus-response model. Your program gets a screen full
of data and must decide what to do with it. When it has processed
that screen, it sends a fresh template to the user and then goes on to
service a different terminal. Because of this form of programming, one
cannot implicitly encode the dialogue within the program structure.
So, for example, it is quite difficult to ensure that the user can only
delete a record after it has been displayed.

To ease the problem of writing (relatively) complex dialogues
under this regime, the author used flowcharts to describe the
interaction with each user. FigureÊ2.6 shows a flowchart for a delete
sub-dialogue similar to those used.

Note two things, despite surface similarities, there are important
differences both from normal program flowcharts and from STNs.

First, note that a flowchart of the program implementing this
dialogue would (because of the stimulus-response model) be tree-
like. It would have to explicitly store the dialogue state and generally
being totally incomprehensible without the corresponding dialogue
description. Furthermore, the sorts of things one puts in the boxes of
a dialogue flowchart are different from program flowcharts. For
example, reading a record could be a complex activity, say searching
through a file until the matching record is found. However, from the
dialogue viewpoint this corresponds to a single system action.

Note also that although superficially like an STN, with boxes
connected by arrows, the emphasis is rather different. The boxes
represent system processes or user interactions, that is, the notation is
event/process oriented rather than state oriented.

In a different vein, formal notations are often criticised for the
amount of work required. However, the authorÕs experience counters
this. The author used these diagrams and converted them,
mechanically, but by hand into COBOL programs. Using this method
I was able to produce within days, systems which had previously
taken months to complete. Furthermore, changes could be
accomplished within hours (no mean feat within such an
environment!). Although, it might be nice to think this was due to
superior programming skillsÊ(!), this could in no way account for an
order of magnitude difference in productivity.

That is, the adoption of a kind of formal notation did not waste
valuable time, but instead made phenomenal time savings.

26 Perspectives on HCI

Figure 2.7 Flow chart of deletion sub-dialogue

Prototyping

Dialogue descriptions can be used to drive prototyping tools or
simulators. This is rather like the use with UIMS, but usually with a
less extensive environment. One example of this is Heather
AlexanderÕs SPI notation (Specification Prototyping and Interaction)
(Alexander, 1987). This uses a variant of CSP for the dialogue
description and then has tools which allow one to ÔrunÕ the dialogue
seeing the possible interaction paths.

Another support tool is Hyperdoc developed by Harold Thimbleby
(Thimbleby, 1993), shown in FigureÊ2.8. The screen shows part of the
description for a JVC video-recorder. The top half of the screen is a
drawing of the interface. The buttons on the drawing are active Ñ the
simulation runs when they are pressed. On the bottom left, we can
see part of the dialogue description. This describes the transitions
from the state ÔplayPauseÕ. For example, if the user presses the
ÔOperateÕ button, the state will change to ÔoffTapeInÕ.

Formal methods 27

Figure 2.8 Hyperdoc

In fact, this tool does more than simply simulate the dialogue, it can
perform several forms of dialogue analysis.

2.4.3 Dialogue properties

Given a dialogue description, we can begin to look at what properties
it satisfies. There are several dialogue properties which are to do with
local dialogue actions from a single state:

completeness Ð look at each state, is there an arc coming from that state for each
possible user action? If not, what is the effect on the system if the user
performs this action? This is a good way of checking for Ôunforeseen
circumstancesÕ.

determinism Ð is the behaviour uniquely defined for each user action. In a simple
STN this corresponds to checking that there is at most one arc labelled
with each user action from a particular state. Non-determinism can be
deliberate, corresponding to an application decision. However, it can be a
mistake, and this is especially easy in complex hierarchical STNs,
production rules systems etc. Automatic tools can help check for this.

consistency Ð does the same user action have a similar effect in different states? If
not are these dialogue modes visibly different?

If we look back to FigureÊ2.4, we can check it for completeness. The
action Ôselect-lineÕ is not mentioned in either of the line states, but this
is deliberate. The line option is assumed to be on a pop-up menu and
so cannot occur except from the menu state. The remaining actions
are then single and double clicks. What happens if we double click in
either of the circle states? Is this signalled to the user as an error by a

28 Perspectives on HCI

beep, simply ignored, does it do something odd (a feature!) or does it
crash the program?

Another set of properties are more global, considering how easy or
difficult it is to get from one state to another, and often encompassing
whole trains of actions.

reachability Ð can you get anywhere from anywhere? That is, imagine you are at
a particular dialogue state and you want to get to a different state. Is there
a sequence of user actions which is guaranteed to get you there? In
addition, we may want to ask just how complicated and long that
sequence is.

reversibility Ð can you get to the previous state? Imagine you have just done an
action, but wished you hadnÕt. This is a special case of reachability, but
one which we expect to be especially easy Ñ we all make mistakes. Note
this is not undo Ñ returning to a previous dialogue state does not in
general reverse the semantic effect.

dangerous states Ð there are some states you donÕt want to get to. Does the system
make it difficult to perform actions which take you to these dangerous
states?

As an example, we can check the reversibility of the drawing tool
(FiguresÊ2.5 andÊ2.6). Imagine we want to reverse the effect of Òselect
ÔlineÕÓ from the graphics Menu state. We can perform three actions:

click Ð double click Ð select ÔgraphicsÕ
These return us to the graphics pop-up menu. However, these will
leave a vestigial circle on the display. That is, in this case, as we
warned, reversing the dialogue is not undo.

Note also that this reachability for dialogue states is equivalent to
the definition for full system states, but weaker. A system cannot be
reachable in the PIE sense if it is not reachable at the dialogue level,
but, like undo, dialogue reachability does not guarantee full
reachability.

In graph theoretic terms, dialogue reachability is called strong
connectivity and the Hyperdoc tool, described previously, is able to
perform this analysis for the designer.

Formal methods 29

2.4.4 Example Ð digital watch

UserÕs documentation

A digital watch has a very limited interface Ñ 3 buttons. These must
control the watch display (time/calendar) a stopwatch mode and an
alarm.

We only consider one of the buttons, button ÔAÕ, which is used to
move between the four main modes: time/calendar, stopwatch, alarm
setting and time setting.

FigureÊ2.9 shows a portion of the user instructions. It is a simple
state transition network.

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

A

Time display Stop watch

Time setting Alarm setting

A

AA
Depress
 button A
 for 2 seconds

S M T W T F S

ALM

AM

Figure 2.9 Instructions for digital watch

We can analyse this network. The time and alarm setting modes are
dangerous states, we donÕt want to set the time by accident. These
states are guarded Ñ you have to hold the button down for two
seconds. This button is very small and it is difficult to hold it down by
accident.

What about completeness? The idea of holding the button down
suggests that we ought to distinguish the actions of depressing and
releasing button ÔAÕ. So, what do these actions do in the different
modes?

Although the STN is incomplete this is acceptable for the user
instructions so long as undocumented sequences of actions do not

30 Perspectives on HCI

have a disastrous effect. However, the designer must investigate all
possibilities to check this.

DesignerÕs documentation

Extensive experimentation eventually revealed the complete STN for
the watch, shown in FigureÊ2.10. This includes for each state the effect
of the three actions:

¥ depress A
¥ release A
¥ wait two seconds

S M T W T F S S M T W T F S

STP

S M T W T F S

SET

Time display Stop watch

Time setting Alarm setting

Depress A

2 seconds

S M T W T F S

ALM

AM

S M T W T F S S M T W T F S

STP

Release A Release A

Depress A

Depress A 2 seconds

Release A Release A

Figure 2.10 Design diagram for digital watch

Notice that this required the addition of two meta-stable versions
of the time/calendar state and the stopwatch state. This is the sort of
diagram that the designer would need to analyse and to pass on to
the implementor.

The diagram looks fairly complex Ñ and weÕve only looked at one
button!

Formal methods 31

2.4.5 Example Ð dangerous states

One of the word processors being used to prepare this document
exhibits dangerous states. It has two main modes, the main mode
where you edit the text, a menu and help screen from where you
perform filing operations. You switch between these modes with the
ÔF1Õ key. In addition, from the menu you can exit the word processor
by hitting the ÔF2Õ key. These modes and the exit are shown in
FigureÊ2.11.

edit exitmenu
F1 F2

Esc

Figure 2.11 Main modes of text editor

If the text has been altered it is automatically saved upon exit.
However, if you have altered the text, but then decide to abandon
your edits, this automatic save can be turned off by hitting the escape
key in the Menu mode. Subsequent edits will reset this and the text
will be again be saved. Of course, not saving altered text is dangerous
(but may be required). In order to expose this behaviour the diagram
must be redrawn with the states duplicated to differentiate exit with
and without save . We therefore get the diagram in FigureÊ2.12, in
which the dangerous states have been hatched.

edit exitmenu
F1 F2

Esc

edit exitmenu
F1 F2

Esc

any
update

Figure 2.12 Revised STN with dangerous states

This multiplying of states is a semantic distinction, but can be
recorded in the dialogue. We can then ask at a dialogue level whether
or not it is easy to get into the dangerous states by accident. The user

32 Perspectives on HCI

spends most of the time in the edit state, so the most dangerous
sequence is ÔF1-Esc-F2 Ñ exit with no save. This is rather close to the
sequence ÔF1-F2Õ Ñ exit with save, but is this mistake easy to make?

If we decided it was, we can insert a guard, such as a dialogue box
asking for confirmation. In fact, the word processor has no such
guard.

The dialogue is not as is sometimes claimed independent of
presentation. There are various lexical and presentation issues which
impinge on the dialogue. In particular, the layout of keys on a
keyboard or menu items on a screen affects the sort of lexical errors
which occur. For example, the authorÕs old computer had the function
keys on a separate keypad. One could not accidentally hit ÔEscÕ in the
middle of the sequence ÔF1-F2Õ. However, the authorÕs current
keyboard layout is as in FigureÊ2.13 Ñ disaster!

Esc F1 F2 F3 ...
Figure 2.13 Dangerous function key layout

2.5 Summary
Because it forces you to be explicit using a formal specification forces
the designer to clarify design issues. Details which might be missed
or ignored are made explicit and salient. We saw that even when
discussing a simple four function calculator and it will also be
apparent in the next chapter. This does not mean that one is
swamped in a sea of detail. The ability to work at different levels of
abstraction means that you can choose which aspects require this
precise treatment. However, having selected the appropriate
abstraction, the formalism does not allow you to fudge issues!

Generic models are designed to allow particularly high level
analysis. In our example, we saw how a formal analysis showed that
certain types of undo command are impossible. It would be virtually
impossible to come to this conclusion without a formal analysis. Even
many failed attempts at designing and programming such an undo
system would not convince one of its impossibility as the complexity
of the task would suggest that there were still alternatives to try.
However, note that the result of this analysis is an improved
understanding of undo which can then be communicated without
necessarily using full formalism.

Formal methods 33

We saw that formal modelling techniques, although powerful and
useful, require a high level of formal expertise. The generation of
informal understanding is one way that the benefits of formal work
can distributed. However, in order to Ôgive awayÕ the benefits of this
work to the typical human-factors practitioner less mathsÕ intensive
forms of analysis are also required.

Dialogue notations of various forms are often used during the
interface design process. We have seen how simplified forms of the
usability properties can be tested on dialogue descriptions,
sometimes with automatic support. Furthermore, the dangerous
states example showed how the dialogue description can form a focus
for information from both the semantic level (what is dangerous) and
the lexical level (what slips are easy to make).

Diagrammatic dialogue notations are not less formal because they
are graphical. They simply are formal about different things. Even a
drawing of a proposed screen design is formal in that one can check
the eventual system against this ÔspecificationÕ: are the specified fields
present, are they positioned as shown? Similarly, an hierarchical task
analysis, as in Chapter 7, makes very precise and formal statements
about the performance of a task using a system. Any form of
specification involves some formal parts about which it makes precise
statements, some informal parts perhaps in the form of textual
comments, and some things about which it says nothing. The
important question is not whether or not you should use formal
methods Ð instead one needs to look at the methods being used and
ask whether you know which aspects are formal, and if so whether
they are being formal about the right things. And if not Ð well
perhaps you should try some of the ideas in this chapter!

34 Perspectives on HCI

Further reading

General

Dix, A. J., Finlay, J. E., Abowd, G., and Beale, R (1993). Human-Computer
Interaction. London: Prentice Hall.
The material in this paper draws extensively from Chapters 8 andÊ9

of this book, which also expands upon several of the areas.

Formal models of interaction and specification

Dix, A. J. (1991). Formal methods for interactive systems. London: Academic Press.
This covers the PIE model and many extensions and other models,

including those on which status/event analysis is based.

Harrison, M.D. and Thimbleby, H.W., editors (1990). Formal Methods in Human
Computer Interaction. Cambridge: Cambridge University Press,.
An edited collection covering a range of formal techniques.

Thimbleby, H. W. (1990). User Interface Design. New York: ACM Press, Addison-
Wesley.
A wide ranging book which some extensive explicit formal

material, and employing a formal approach to problems in much of
its informal material.

Dix, A. J. and Runciman, C. (1985). Abstract models of interactive systems. In
HCIÕ85: People and Computers I: Designing the Interface, Johnson, P. and Cook, S.
(eds.), pp. 13Ð22. Cambridge: Cambridge University Press.
The original PIE paper.

Sufrin, B. (1982). Formal specification of a display editor. Science of Computer
Programming 1, 157Ð202
A classic paper describing the formal specification of a display

based text editor.

Dix, A. J. (1992). Beyond the interface. In Engineering for Human-Computer
Interaction, Larson, J. and Unger, C. (eds.), pp. 171Ð190. North-Holland.
Describes some aspects of status/event analysis relating

status/event phenomena to the timescales over which they operate
and the concept of pace. See also ChapterÊ9 ofÊ(Dix et al., 1993) for
statusÐevent timeline diagrams and ChapterÊ10 ofÊ(Dix, 1991) for its
formal roots.

Formal methods 35

Undo

In case the readerÕs appetite for the fascinating area of undo has
been wetted here are a few papers to read. In addition, see Chapter 2
andÊ4 of (Dix, 1991) and ChapterÊ12 of (Thimbleby, 1990).

Abowd, G. D. and Dix, A. J. (1992). Giving undo attention. Interacting with
Computers 4(3), 317Ð342.
A formal analysis of undo in the context of group editing.

Archer, Jr., J., Conway, R. and Schneider, F.B. (1984). User recovery and reversal
in interactive systems. ACM Transactions on Programming Languages 6(1), pp. 1Ð
19.
A classic paper analysing different forms of undo.

Vitter, J. S. (1984). US&R: A new framework for redoing. IEEE Software 1(4), pp.
39Ð52.
Takes undo and redo to its extreme!

Yang, Y. (1988). Undo support models. International Journal of Man-Machine
Studies 28(5), pp. 457Ð481.
Informal analysis and review.

Dialogue

As well as the following, see ChapterÊ8 of (Dix et al., 1993) which
describes dialogue properties in more detail and any book on UIMS.

Alexander, H. (1987). Formally-based Tools and Techniques for Human-
Computer Dialogues. London: Ellis Horwood.
Describes her SPI notation which is both quite powerful and very

easy to read.

Thimbleby, H.W. (1993). Combining systems and manuals. In HCI Ô93: People and
Computers VIII, J.L. Alty, D. Diaper and S. Guest (Eds.) pp. 479-488.
Cambridge: Cambridge University Press.
Describes the Hyperdoc tool, which supports simulation, dialogue

analysis and automatic documentation.

36 Perspectives on HCI

References
Abowd, G. D. (1990). Agents: communicating interactive processes. In HumanÐ

Computer Interaction Ð INTERACTÕ90, Cockton, G. and Shakel, B. (eds.), pp.
143Ð148. Elsevier Science Publishers.

Abowd, G. D. (1991). Formal Aspects of HumanÐComputer Interaction. Technical
Monograph PRG-97, Oxford University, Programming Research Group,
D.Phil. thesis.

Abowd, G. D. and Dix, A. J. (1992). Giving undo attention. Interacting with
Computerss 4(3), 317Ð342.

Alexander, H. (1987). Formally-based Tools and Techniques for Human-Computer
Dialogues. London: Ellis Horwood.

Archer, Jr., J., Conway, R. and Schneider, F.B. (1984). User recovery and reversal
in interactive systems. ACM Transactions on Programming Languages 6(1), pp. 1Ð
19.

Dix, A. J. and Runciman, C. (1985). Abstract models of interactive systems. In
HCIÕ85: People and Computers I: Designing the Interface, Johnson, P. and Cook, S.
(eds.), pp. 13Ð22. Cambridge: Cambridge University Press.

Dix, A. J. (1991). Formal methods for interactive systems. London: Academic Press.
Dix, A. J. (1992). Beyond the interface. In Engineering for Human-Computer

Interaction, Larson, J. and Unger, C. (eds.), pp. 171Ð190. North-Holland.
Dix, A. J., Finlay, J. E., Abowd, G. D., and Beale, R (1993). Human-Computer

Interaction. London: Prentice Hall.
Dix, A. J. (1994). LADA a logic for the analysis of distributed action. In Proceeding

of the Eurographics Workshop on the Specification and Design of Interactive Systems,
Carrara, Italy.

Harrison, M.D. and Thimbleby, H.W., editors (1990). Formal Methods in Human
Computer Interaction. Cambridge: Cambridge University Press,.

Johnson, C. W. (1992). A Principled Approach to the Integration of Human Factors and
Systems Engineering for Interactive Control System Design. YCST 92/05,
University of York, Department of Computer Science, D.Phil. thesis.

Sufrin, B. (1982). Formal specification of a display editor. Science of Computer
Programming 1, 157Ð202

Thimbleby, H. W. (1990). User Interface Design. New York: ACM Press, Addison-
Wesley.

Thimbleby, H.W. (1993). Combining systems and manuals. In HCI Ô93: People and
Computers VIII, J.L. Alty, D. Diaper and S. Guest (Eds.) pp. 479-488.
Cambridge: Cambridge University Press.

Thimbleby, H. W. (1993). Literate using for finite state machines. University of
Stirling.

Vitter, J. S. (1984). US&R: A new framework for redoing. IEEE Software 1(4), pp.
39Ð52.

Yang, Y. (1988). Undo support models. International Journal of Man-Machine
Studies 28(5), pp. 457Ð481.

