
Finding fixed points in non-trivial domains:
Proofs of pending analysis and related algorithms

Alan Dix

Full Reference
A. J. Dix (1988). Finding fixed points in non-trivial domains: proofs of pending analysis and related
algorithms. YCS 107, Dept. of Computer Science, University of York.
http://alandix.com/academic/papers/fixpts-YCS107-88/

This version re-typeset March 2017

Abstract

Young and Hudak1 developed an algorithm called Pending Analysis for deriving the fixed points of first
order functions over binary domains. They prove a result in their paper which justifies the approach, but
does not really prove its correctness. Further they suggest that the analysis may be extended to deeper
domains. The structure of pending analysis means that many of the intermediate functions generated are
not monotonic, which means that arguments of correctness based on partial orderings tend to fail without
great care.

This paper attempts to fill some of the gaps in this work, we will:

1 Giv e proofs of correctness for the binary case when the defining functional is fully monotonic (i.e.
monotonic even for non-monotonic function arguments). This is usually for non-self applicatory
functions.

2 Dev elop a slight variant of the algorithm which makes better use of the monotonicity of the function,
and which is correct for all functions.

3 Show how the binary analysis can be used to solve more complex domains if the primatives are suffi-
ciently well behaved.

4 Parallel steps 1 and 2 for general domains using an iterative version of the algorithm. In particular
proving several incremental fixed point theorems. We will also discus representation and algorithms
for the partial functions used in this algorithm.

5 Show that pending analysis (and probably other algorithms too) can be extended to higher order
functions by considering the term algebra.

6 Show that the concept of a fixed point can be extended to configurations (partial functions), and that
this can be used to generate easy proofs of safeness for pending analysis and similar algorithms.

7 Use these ideas to generate a non-deterministic algorithm which is always correct, and which can be
instantiated with different heuristics to yield optimised algorithms. This algorithm includes as spe-
cial cases pending analysis (with and without memoing) and standard bottom up fixed point calcula-
tion.

1. Introduction

1.1. Background - abstract interpretation

Abstract interpretation is widely used technique for analysing programs. Originally developed for flow
analysis of imperative languages2 It has been especially useful in generating information for the efficient
compilation of pure functional languages.3, 4

-2-

Examples of abstract interpretation include:

• - strictness analysis

• - determinism analysis

• - type checking

• - Currying analysis

• - list length analysis

Typically it is the aim of abstract interpretation to completely evaluate the denotation of the program/func-
tion/expression in the abstract domain. Again typically, but not necessarily, the abstract domain needs to be
finite for this interpretation to succeed for recursive functions. Where the domains are not naturally finite,
some adjustment may be necessary. For example, list lengths are unbounded (or even infinite), but analysis
can be performed over the domain { 0, 1, many }. Similarly, the domains for Milner type checking are
unbounded, but well typed programs have finite types, and careful analysis can prevent infinite recursion
for incorrect programs.

Strictness analysis of first order functions is performed over the domain { ⊥, � }, where ⊥ means definite
non-termination and � means possible termination. Higher order functions have finite domains too,
although they grow in size rapidly.

1.2. Solution by fixed points

Having obtained semantic equations for the abstract domain, it is easy to solve those which are non-recur-
sive. Thus abstract interpretation reduces to the finding of fixed points of an abstracted generating func-
tional. The simple solution to this is to iterate, starting at ⊥. The problem with this is the large number of
argument values we may be solving for. In the first order case there are 2n possible arguments to a function
of arity n, and for higher order functions this increases rapidly. Clack and Peyton-Jones use frontier analy-
sis5 which is a compact way of storing the values of monotonic functions. This significantly improves the
space and time complexity in "average" cases.

1.3. Pending analysis

Unfortunately, even when there are only a few points at which we want to know the functions value, we
must iterate until the whole function is stable, as there may be "plateaus" for particular value which may
later start to climb again.

Young and Hudak1 suggest an algorithm called pending analysis which can take advantage of the few val-
ues that the fixed point is required at. They suggest that when evaluating the abstracted function f at the
argument value a, we keep a note that f (a) is "pending", then when we encounter during the expansion of
f (a) another instance of the same application, we substitute ⊥ for this. They differentiate this from stan-
dard iteration in that it is an "inside-out" strategy whereas pending analysis is "outside-in".

They only present their algorithm for the case of binary domains (with strictness analysis in mind), but do
suggest that the technique could be extended to deeper domains by iterating. They also limit themselves to
first order functions.

1.4. Purpose and content of paper

Young and Hudak proposed their algorithm after practical experience suggested its correctness. They
include a proof, however this is slightly flawed. The purpose of this paper is to give correct proofs of pend-
ing analysis for the binary case with conditions for its correctness, and to extend the algorithm to more
complex domains, both deeper domains and higher order functions.

Although I have not found any counter examples where simple pending analysis fails, it is only possible to
prove its correctness for a limited class of functions, namely non-self applicatory functions. A slightly dif-
ferent algorithm is proposed which is correct for all functions, and which makes better use of the mono-
tonicity of the target function.

Because the flaws in the original proof are quite subtle, and because many obvious properties turn out to be
false (or far more difficult than at first glance) the proofs are given in detail, however I hope the progression

-3-

from simple to more complex proofs makes this more acceptable. Proofs will give special attention to the
monotonicity of intermediate functions, as this is where most problems arise. They are typically concerned
with two factors:

Safety - giving a result no lower in the domain than is correct.

Optimality - giving a result no higher than necessary

The safety result is most important in strictness analysis, as it is a more dangerous error to consider an argu-
ment strict that is not than to leave a strict argument lazy. In general we can assume that the domain is ori-
ented such that � is safe but ⊥ is most desirable. This is in fact only important when we consider higher
order functions. Young and Hudak make use of the relative importance of safety when they suggest "pes-
simizing", that is returning results deliberately to high in the domain. However "obviously" safe options
such as this must be viewed with extreme care as because of non-monotonicity they may be incorrect
(unsafe).

We will consider first of all, in Section 2, the case of binary domains. The problems in Young and Hudak’s
proof are discussed and correct proofs given, together with the improved algorithm. After this is a short
section giving conditions when simple uniterated pending analysis can be applied to more complex
domains.

Section 4 introduces the representation of partial functions as configurations which will be needed in the
analysis of non-binary domains. Section 5 and 6 give proofs of algorithms for non-binary domains, Section
5 is concerned with non-self applicatory functions, and proves simple pending analysis with iteration cor-
rect for these. Section 6 extends the analysis to all functions using the improved algorithm.

The representation of configurations is crucial to the efficiency of the improved algorithm, and Section 7
discusses ways of structuring and processing these. Higher order functions are discussed in Section 8, and
it is suggested that these may be represented by terms (a reified interpretation) yet still preserve the correct-
ness of the algorithm. Thus saving on the otherwise complex representation of these.

The proofs given are all expressed for evaluation in purely functional terms, and thus optimisations like
memoing require slight reworkings of these, especially to ensure optimality. Instead of doing these directly
Section 9 and 10 take a different approach. Section 9 looks at the fixed point properties of configurations
considered in their own right. These properties suggest a new non-deterministic (or generic) algorithm
which considers configurations as whole. Pending analysis, pending analysis with memoing and standard
iterative fixed point calculation are all instances of this algorithm, and because the non-deterministic algo-
rithm has been proved correct, all instances of it are also. In addition, new instances with more intelligent
heuristics can be formulated.

2. Proofs for binary case

2.1. Notation

For internal consistency with the rest of this paper the notation will differ slightly from that of Young and
Hudak. we are trying to solve for a function I with arguments in a domain Appl and results in a domain D.
That is I e Interp where

Interp : Appl → D

Typically I represents several user level functions, and its arguments are of the form f (d1 . . dn) (hence
Appl - application). Elements of the domain Interp we will also refer to as interpretations. The desired
function is defined recursively using a functional G

G : Interp → Interp

and is the least fixed point of G

fix G = ∨ Ii where I0 = ⊥
Ii+1 = G Ii

Young and Hudak use the notation h[v/x] for the function that is equal to h ev erywhere except at x
whence it equals v. For this section we will only use this when the substituted value is ⊥, in addition it is

-4-

always a function resulting from and application of G, thus we will use the notation Ga for the functional
such that for all I , Ga I equals G I ev erywhere except at a where it is ⊥. This is the constrained iterator.
We will also use the more general notation GA with the obvious meaning:

GA I |a = ⊥ a e A
= G I |a otherwise

Ga = G{ a }

The notation f |x is used above to mean the value of f at x (i.e. f (x)), and is used to reduce the number of
brackets that would otherwise appear. It is consistent with the standard notation (also used) f |S meaning
the function identical to f except restricted to the set S.

2.2. One pending argument

Young and Hudak give a proof that for arbitrary positive integers, m, n (in their notation)

(Gm (Gn(⊥)))(a) = (Gm (Gn(⊥)[⊥/a]))(a)

or in my notation

Gm Gn(⊥)|a = Gm Ga Gn-1(⊥)|a

They giv e as an informal statement of the theorem

Theorem
If, while evaluating f (a) we find that it depends on the value of f (a) again, returning ⊥ as the

result of the second (nested) call to f (a) is correct with respect to the semantics of recursive mono-
tonic boolean functions.

It should be noted that the formal theorem shows that for any such nested call (or to be precise all calls at a
certain depth in the call graph) we can substitute bottom, it does not show that we can substitute for all such
calls. The formal theorem is thus a justification of pending analysis, rather than a proof of it. Whether the
informal and formal statements of the theorem say the same thing is a matter of interpretation.

To prove the stronger case we would need to show

Gm Gn(⊥)|a = Gm Gn
a(⊥)|a

At first sight we could follow exactly the lines of Young and Hudak’s proof for this slightly stronger result:

Proof

(1) show Gn
a I � Gn I

not trivial
(1.1) G0

a I = I = G0 I
(1.2) induction, assume Gi

a I � Gi I
(1.3) ⇒ G Gi

a I � G Gi I
(1.4) ⇒ Ga Gi

a I � G Gi I
QED 1

(2) ⇒ LHS � RHS
(3) case LHS = ⊥ QED

-5-

(4) case LHS = �
(5) let r be the largest integer such that Gr (⊥)|a = ⊥

show Gr
a(⊥) = Gr (⊥)

(5.1) G0
a(⊥) = ⊥ = G0(⊥)

(5.2) induction, assume Gi
a(⊥) = Gi(⊥) i < r

(5.3) ⇒ G Gi
a(⊥) = G Gi(⊥)

(5.4) ⇒ G Gi
a(⊥)|a = ⊥ = G Gi(⊥)|a

(5.5) ⇒ Ga Gi
a(⊥) = G Gi

a(⊥) = G Gi(⊥)|a
QED 5

(6) show Gr
a(⊥) � Gn

a(⊥)
same r as above

(6.1) G0
a(⊥) = ⊥ � Gk(⊥) ∀k

(6.2) induction, assume Gi
a(⊥) � G j

a(⊥) i < j and i < r
(6.3) ⇒ G Gi

a(⊥) � G G j
a(⊥)

(6.4) ⇒ Ga Gi
a(⊥) � Ga G j

a(⊥)
QED 6

(7) ⇒ G Gr
a(⊥) � G Gn

a(⊥)
(8) ⇒ � = G Gr (⊥) = G Gr

a(⊥) � G Gn
a(⊥)

⇒ G Gn
a(⊥) = �

QED case LHS = �
QED theorem

Now this proof looks fairly convincing, but it is dubious at two places, steps 1.3 and 6.3. Both these steps
depend on a monotonicity property of G of the form:

f � f ' ⇒ G f � G f '

Now this of course is correct for monotonic functions f and f ', but in buth cases we are dealing with the
results of Ga which are of course in general not monotonic. In fact the proof does hold so long as G is
defined using terms (as is the case in Young and Hudak’s work). In this case it satisfies a stronger property
it is pseudo-monotonic. That is the above identity hold so long as one or other of f or f ' is monotonic.

Definition - pseudo-monotonic

G is pseudo-monotonic if
either f or f ' monotonic and f � f ' ⇒ G f � G f '

If we reexamine the two dubious steps, at 1.3 we find that we are comparing Gi
a I and Gi I , the later of

which is of course monotonic (so long as the seed I is). In the second case we were comparing Gi
a(⊥)

and G j
a(⊥) howev er we stipulated that i � r, so Gi

a(⊥) = Gi(⊥) which is of course monotonic.

2.3. Further pending arguments

Of course, pending analysis would not be very useful if you could only use it for one argument. It is
expected that we would recursively calculate the values of applications using pending analysis as they arise.
We can describe this algorithm using the function XA defined recursively as:

XA|a = ⊥ a e A
= (G XA + {a})|a otherwise

The final result of pending analysis at a point a is X{}|a, and the function XA is the result of pending analy-
sis when we are part way through with A pending.

At first glance this seems to hardly merit further proof, if we imagine an example of the form:

f (x, y) = y and (f (x, x) or f (x, y))

-6-

Imagine evaluating this at ⊥, �, we would fill in the value of f(⊥, �) as ⊥, then would require the true
value of f(⊥, ⊥), this could clearly be obtained by pending analysis itself (giving eventually ⊥), hence
ev entually yielding the correct value.

If we chose a slightly different example however

f (x, y) = y and (f (x, x) or f (y, x))

This time, we when evaluating at ⊥, �, we would get a call of f(�, �) within the recursive call to
f(y,x), in this case we don’t really want the correct value of f(�, �) so much as the correct value when
were assuming f(⊥, �) is pending. It seems that it is at least safe to return the correct value, since if any-
thing this is (surely?) as large as the value with an application pending. But is it optimal?

In fact, we shall see that there are more fundamental problems than that, and that the obvious proof, follow-
ing the line of the above fails in certain cases. We will uncover these by attempting the proof, which turns
out to be valid for many cases including the previous examples. By doing this we will uncover an impor-
tant sub-class of functions that also have a simpler proof for the case of non-binary domains. Further the
shape of the proof is very similar to the progressively more complex proofs in the paper and is a useful
introduction.

2.4. Proof of binary pending analysis for non-self applicatory functions

We can repeat the proof for single application pending analysis over G, but this time for an embedded case
with some applications pending (A).

Theorem

GA GA
n(⊥)|a = GA GA + {a}

n(⊥)|a

At first sight we could follow exactly the lines of Young and Hudak’s proof for this slightly stronger
result:

Proof

(1) show GA + {a}
n I � GA

n I
not trivial

(1.1) GA + {a}
0 I = I = GA

0 I
(1.2) induction, assume GA + {a}

i I � GA
i I

(1.3) ⇒ G GA + {a}
i I � G GA

i I
(1.4) ⇒ GA + {a} GA + {a}

i I � GA GA
i I

QED 1
(2) ⇒ LHS � RHS
(3) case LHS = ⊥ QED
(4) case LHS = �
(5) let r be the largest integer such that GA

r (⊥)|a = ⊥
show GA + {a}

r (⊥) = GA
r (⊥)

--- works as before ---
(6) show GA + {a}

r (⊥) � GA + {a}
n(⊥)

same r as above
(6.1) GA + {a}

0(⊥) = ⊥ � GA
k(⊥) ∀k

(6.2) induction, assume GA + {a}
i(⊥) � GA + {a}

j(⊥) i < j and i < r
(6.3) ⇒ G GA + {a}

i(⊥) � G GA + {a}
j(⊥)

(6.4) ⇒ GA + {a} GA + {a}
i(⊥) � GA + {a} GA + {a}

j(⊥)
QED 6

(7) ⇒ GA GA + {a}
r (⊥) � GA GA + {a}

n(⊥)
(8) ⇒ � = GA GA

r (⊥) = GA GA + {a}
r (⊥) � GA GA + {a}

n(⊥)
⇒ GA GA + {a}

n(⊥) = �
QED case LHS = �

QED theorem

-7-

Step 5 is an argument about equality and is fine, however steps 1.3 and 6.3 are there to worry us again. The
pseudo-monotonicity of G (and likewise GA) is of no avail, as in general neither of GA + {a}

i I and GA
i I are

monotonic even when I = ⊥ (the particular case of interest). Similarly in step 6.3 neither GA + {a}
i(⊥)

nor GA + {a}
j(⊥) will be monotonic. In fact it is quite on the cards that if a functional F does not yield

monotonic results then we can have F n+1(⊥) � F n(⊥)!

If we try out various examples (such as those in the previous section) we find that in many cases these prop-
erties do hold, and the temporary non-monotonic functions are acceptable.

If we imagine iterating for a typical function, say f

f *(x, y) = y and (f (x, x) or f (y, x))

where f * means the next iteration for f . We find that if f � f ' then f * � f '* whether or not f and f '
are monotonic. That is the generating functional for f is monotonic for all functions whether monotonic or
not. We will call such a functional fully monotonic.

Definition - fully monotonic

G is fully monotonic if
∀ f , f ' f � f ' ⇒ G f � G f '

f and f ' not necessarily monotonic

When do the "general" cases, where the proof fails, arise? The answer is self applicatory functions. That is
functions defined so that an argument to the function may contain an expression dependent on the function.
For instance, fib is non-self applicatory

fib (n) = if n < 2 then 1
else fib (n-1) + fib (n-2)

In the definition of fib, the arguments to it are n-1 and n-2, which do not contain references to fib.

On the other hand tak is self applicatory

tak (x, y, z) =
if x < y then z

else tak (tak (x-1, y, z),
tak (y-1, z, x),
tak (z-1, x, y))

The resulting functional is not fully monotonic (although of course still pseudo-monotonic).

It is easy to see where a loss of monotonicity can appear. If we increase the input value of f to an expres-
sion like f (f (�, �), ⊥), then the result of the inner application of f will clearly increase, but if f was
not monotonic then the outer application may decrease. For example:

f (⊥, ⊥) = � f '(⊥, ⊥) = �
f (�, ⊥) = ⊥ f '(�, ⊥) = ⊥
f (�, �) = ⊥ f '(�, �) = �
so f � f ' but

f (f (�, �), ⊥) → f (⊥, ⊥) → �
f '(f '(�, �), ⊥) → f '(�, ⊥) → ⊥

Formally, a first-order term is self-applicatory if every application of a user defined function is a constant
term (that is a term involving primative operations and arguments only). When we are defining several user
defined functions, we can treat non-mutually recursive functions as primative. The higher order case is
slightly more complex as we need also be careful of non-fully monotonic primatives (like application). Self
application is easy to check statically, and could be done as a pre-pass before more extensive analysis, in
order to select appropriate algorithms.

If we restrict ourselves to functionals defined by non-self applicatory terms, we can show that they are fully
monotonic (see appendix) and thus the above proof holds. We can thus prove binary pending analysis

-8-

correct for this case.

The general result proved is that XA = fix GA, which of course includes as a special case X{} = fix G.
Because the GA are fully monotonic, the fixed point construction makes sense even though the resulting
functions are not monotonic. It is useful to restate the result of the above theorem as:

Incremental fixed point theorem for binary functions

fix GA|a = GA fix GA + {a}|a

Further on we shall prove two similar results, one for non-binary but self applicatory functionals, and one
for general functionals. These results will however become progressively more complex.

We can thus prove the correctness. When A is complete then XA, GA and hence fix GA are all identically
⊥. The recursive case is proved using the above theorem.

Theorem

XA = fix GA

Proof

Induction on size A.
Base case A complete

XA = ⊥
GA = ⊥ ⇒ fix GA = ⊥

QED base case
Inductive case.

Sub-cases
case a e A

XA|a = ⊥ = GA XA + {a}|a
QED a e A

case a ‰ A
XA|a = GA XA + {a}|a

= GA fix GA + {a}|a - induction
= fix GA|a - incremental fixed point theorem

QED a ‰ A
QED inductive cases

QED Theorem

Again we shall see similar proofs later on for non-binary self applicatory and for general functionals.

2.5. General, binary functionals

Simple pending analysis does appear to still work in these cases, but proofs break down. In order to pro-
duce a proof, we must alter the algorithm slightly. The problem is having intermediate non-monotonic
functions. For the non-self applicatory case this did not matter as the functionals were fully monotonic. In
the general case we cannot rely on this and must therefore force the intermediate results to be monotonic.
The simplest way to do this is to always extend the pending values in A so as to make it downwards com-
plete, that is:

a e A and a' < a ⇒ a' e A

If this is so, then GA will take monotonic functions to monotonic functions, hence all the intermediate
results are monotonic. The only extra problem is that we will add more then one element to A, does this
mean we have to iterate several times? In fact not, but we have to modify the proofs very slightly to take
account of this.

The new algorithm is:

-9-

ZA|a = ⊥ a e A
= (G ZA ⊕ {a})|a otherwise

where A ⊕ {a} is A extended by A and then downwards closed. That is:

A ⊕ {a} = A ∪ { a' | a' � a }

We proceed by proving and incremental fixed point theorem, and then showing that ZA = fix HA. As all
the sets A considered are downwards closed, the fixed point construction is meaningful.

Theorem - Incremental fixed point theorem for general binary functions

fix GA|a = GA fix GA ⊕ {a}|a - A downwards closed

Proof

Steps -
(1) GA � GA ⊕ {a}

(2) ⇒ LHS � RHS
(3) case LHS = ⊥ QED
(4) case LHS = �
(5) let r be largest such that GA

r (⊥)|a = ⊥
show GA ⊕ {a}

r (⊥) = GA
r (⊥)

(5.1) GA ⊕ {a}
0(⊥) = ⊥ = GA

0(⊥)
(5.2) induction, assume GA ⊕ {a}

i(⊥) = GA
i(⊥) i < r

(5.3) ⇒ G GA ⊕ {a}
i(⊥) = G GA

i(⊥)
(5.4) ⇒ G GA ⊕ {a}

i(⊥)|a = ⊥ = G GA
i(⊥)|a

(5.5) ⇒ ∀a' � a G GA ⊕ {a}
i(⊥)|a' = ⊥ - monotonicity

(5.6) ⇒ GA ⊕ {a} GA ⊕ {a}
i(⊥) = GA GA ⊕ {a}

i(⊥) = GA GA
i(⊥)

QED 5
(6) show GA ⊕ {a}

r (⊥) � GA ⊕ {a}
n(⊥)

same r as above
---- proof exactly as for GA + {a} ----

(7) ⇒ GA GA ⊕ {a}
r (⊥) � GA GA ⊕ {a}

n(⊥)
(8) ⇒ � = GA GA

r (⊥) = GA GA ⊕ {a}
r (⊥) � GA GA ⊕ {a}

n(⊥)
⇒ GA GA ⊕ {a}

n(⊥) = �
(9) ⇒ GA fix GA ⊕ {a} = �
QED case LHS = �

QED theorem

The only difference from the previous proof was step 5.5, where we had to be careful that all the additions
to A ⊕ {a} were already ⊥, but the monotonicity of the intermediate results ensured this. The final correct-
ness of the algorithm, namely:

Theorem - correctness of pending analysis for general binary functions

ZA = fix GA - A downward closed

can be proved exactly as the non-self applicatory case, except that the recursive case has A ⊕ {a} rather
than A + {a}. This proof is omitted.

2.6. Discussion of binary case

The proof given in Young and Hudak’s paper is useful in convincing one of the correctness of pending anal-
ysis, but does not prove it entirely. It is possible to use the form of their proof to give a full proof of cor-
rectness of pending analysis applied to one application, but even this uses a property of functionals defined
using terms, pseudo-monotonicity, the normal monotonicity of the functional being insufficient to complete
the proof. The case of multiple pending applications is more difficult and we needed to restrict ourselves to
non-self applicatory functions when the defining functional would be fully-monotonic and hence the non-

-10-

monotonicity of the intermediate terms acceptable. Finally, we proved the case of general binary functions
by modifying the basic algorithm slightly in order to ensure monotonicity of intermediate results.

We hav e not proved the general case using simple pending analysis, but equally I have not found any
counter examples, although there are functionals that do not satisfy apparently sensible properties like:

G GA + {a} fix G � G GA fix G

3. Extending binary analysis by abstract interpretation

If we are working over a non-binary domain D we may still be able to use the results for the binary case if
the primative operations have a particular form. For any y in D define:

Absy : D → 2
dy = � if d � y

= ⊥ otherwise

Now if for each y and each primative operator m we can define an abstract version my such that:

∀ a e dom m my(ay) = (m(a))y

Then this identity is also satisfied for the functional G defined in terms of them, and we can prove that sim-
ple pending analysis also works for this non-binary case.

Sketch of proof

Assume that fix G (a) = y. We use Absy and find that the result of the abstract pending analysis is �,
and hence show that the result of pending analysis is at least as big as y. We then by consider Absy' for all
y' above y, and similarly show that the abstract pending analysis yields ⊥ and hence that the result of pend-
ing analysis is less than all these y'.
In the following, let Pend(F , x) be the result of applying pending analysis to obtain the value of the fixed
point of F at the point x in the appropriate domain.

Proof

fix G (a) = y
Step 1 - prove Pend(G, a) � y

fix G (a) = y
fix Gy (ay) = �
Pend(Gy, ay) = � - correctness of pending analysis for binary domain
(Pend(G, a))y = � - pending analysis uses only primative operations
Pend(G, a) � y - def ’n of Absy

QED 1
Step 2 - prove y < y' ⇒ Pend(G, a) < y'

fix G (a) = y
fix Gy' (ay') = ⊥ - y < y'
Pend(Gy', ay') = ⊥
(Pend(G, a))y' = �
Pend(G, a) < y' - def ’n of Absy

QED 2
QED

4. Configurations

Frontier algorithms and the like are based around producing successive interpretations approximating
fix G. That is they find values for all possible function applications simultaneously. Pending analysis
seeks to only look at sufficient points to find the value of fix G for a particular function at a particular
point. We will therefore want to consider partial interpretations. We will call a partial interpretation a con-
figuration.

-11-

The set of configurations is then a subset of the partial functions between applications and results.

Config ⊆ Appl ∂ D

We will use the notation C + (a→d) for the extension of C to map an application a to a result d . It is
assumed that a‰dom C. That is:

Definition - C + (a→d)

dom C + (a→d) = dom C + { a }

C + (a→d)|dom C = C
C + (a→d)|a = d

We will use several partial orderings on configurations.

We can compare configurations using a pointwise comparison:

C � C ' ≡ dom C = dom C '
∀ a e dom C C (a) � C ' (a)

We will also need a domain oriented ordering -

C ⊆ C ' ≡ dom C ⊆ dom C '
∀ a e dom C C (a) = C ' (a)
i.e. C '|dom C = C

Also we want a mixture of the two :

C << C ' ≡ dom C ⊆ dom C '
∀ a e dom C C (a) � C ' (a)

C >> C ' ≡ dom C ⊆ dom C '
∀ a e dom C C (a) � C ' (a)

These last two relations are weaker than the above two:

C � C ' ⇔ C << C ' and C ' >> C
C � C ' ⇔ C >> C ' and C ' << C
C ⊆ C ' ⇔ C << C ' and C >> C '

A configuration is total if its domain is all of Appl.

A configuration (partial or total) is said to be monotonic if:

∀ a, a' e Appl a � a' ⇒ Ca � Ca'

A total configuration can be regarded as an interpretation and this definition of monotonicity is then stan-
dard monotonicity.

We can express the recursion as a function H over total monotonic configurations:

H : Config → Config

HC = ∩{ G I | C ⊆ I }

Note that this is the intersection of the G I , that is the result is a configuration which is only defined at the
points where all the I agree. An equivalent definition would be.

dom (HC) = { a | ∀I , I ' C ⊆ I and C ⊆ I ' ⇒ G I (a) = G I '(a) }

(HC)|a = G I (a) for any I st C ⊆ I

H is thus clearly a monotonic (wrt. <<, >>, � and ⊆) continuous functional over monotonic configurations
and equal to G for total configurations. In most of the following we will only apply H to total configura-
tions, but we will use H consistently whether the configuration is total (and G would do) or not. Typically

-12-

when a configuration is total we will refer to it as I or J , possibly primed, whereas configurations will be C,
C ' etc.

5. Pending analysis for non-self-applicatory functions

Young and Hudak suggest that their algorithm can be extended to non-binary domains by iterating the
pending analysis at each stage. This brings to mind numerical optimisation algorithms, where when opti-
mising several quantities, one fixes one of them and optimises over the rest under that assumption. Finally
one optimisises the chosen "pivot" value using the result of the recursive optimisation as ones target func-
tion.

In the binary case, we had the simple recursion equation for XA, the function "given" that the elements of A
are ⊥.

XA|a = ⊥ a e A
XA|a = H XA + a |a otherwise

This is more complex when the domain is deeper. Whereas the in the binary case we get the right value
after one application of H we must either expand the function deeper, or iterate. By expanding several calls
before we apply the pending value, we would do too much work if the value were quite low in the domain,
and thus the second course seems better. Iterating requires relatively minor changes to the binary algo-
rithm. In the binary case, an application was either not pending or ⊥, in the non-binary case an application
may be pending with various values and hence we use a configuration to capture these pending values.
When we come to expand the value of a function, and the application is pending, we return the pending
value as held in the configuration:

XL
C |a = C (a) a e dom C

When we come to expand the value of a function, we must change the rule when the application is not
pending. For binary analysis this was:

XA|a = H XA + a |a

this must now include a fixed point calculation:

XL
C |a = fix h

where
h(d) = (H XL

C + (a→d))|a

Clearly we must again be careful about non-monotonic intermediate results, as otherwise the fixed point
calculation may not be valid and we cannot argue sensibly about � conditions. Thus we will first confine
ourselves to the case of non-self applicatory functionals as we did for binary functions. We will return to
the general case in the next section with a slightly modified algorithm. Non-self applicatory functions are
ok because their generating functionals are fully monotonic. Although intermediate results will be non-
monotonic the final function is monotonic however.

In order to prove the algorithm correct we will need to prove an incremental fixed point theorem that says
we can calculate the fixed point of H at a point a by first working out a fixed point of a function using H
fixed at various values. In general we will have that the fixed point of HL

C (H fixed to take the values of C)
can be expressed in terms of HL

C + (a→d):

Incremental fixed point theorem for fully monotonic functionals

fix HL
C |a = fix g

where
g(d) = HL

C (fix HL
C + (a→d)) | a

HL
C can be defined in terms of a limiting functional LC:

-13-

HL
C = LC H

LC F | a = C (a) a e dom C
= F(a) otherwise

Clearly L{} is the identity and thus fix H L
{} = fix H . Further LC is fully monotonic so all the HL

C , bt com-
position with H , will be also.

Given this we can prove the correctness of the evaluation algorithm.

XL
C : Appl → D

XL
C |a = C(a) a e dom C

XL
C |a = fix h otherwise

where
h(d) = (H XL

C + (a→d))|a

We want X L
{} to be equal to fix H , so we prove the general case that for all C, XL

C = fix HL
C . The incre-

mental fixed point theorem is used to prove the recursive case. We proceed by induction on the size of C.

5.1. Correctness of algorithm for non-self applicatory terms

Theorem

XL
C = fix HL

C

Proof

Induction on size of C
We assume that XL

C = fix HL
C , for any C such that || C || > C

Base case C total
In this case HL

C is constantly C and thus fix HL
C = C

Similarly XL
C is constantly C

QED C total

Prove ∀ a XL
C (a) = (fix HL

C)a

there are two cases :
either a e dom C

XL
C (a) → Ca

but fix HL
C |dom C = C

QED a e dom C
or a ‰ dom C

XL
C (a) → fix h

where h(d) = H XL
C + (a→d) |a

now || C + (a→d) || � || C ||
⇒ H XL

C + (a→d) = H fix HL
C + (a→d) - by induction

That is h here is equal to g of the incremental fixed point theorem,
and as g is monotonic the fix h is the minimal fixed point of g.
We thus apply the theorem :-
XL

C (a) = fix g = (fix HL
C)a

QED a ‰ dom C
QED inductive cases

QED theorem

5.2. Incremental fixed point theorem for fully monotonic functionals.

As the theorem includes the fixed point of g it is slightly different from the proofs for the binary case. First
of all we prove that d fix � (fix HL

C)a. Rather than trying to prove the reverse equality directly, we use

-14-

this result to prove more generaly that and then use this to show that in general fix HL
C � fix HL

C fix
.

Finally, we prove the reverse inequality for the general case by showing that fix HL
C fix

is a fixed point of HL
C .

Theorem - incremental fixed point theorem

let g(d) = (HL
C (fix HL

C + (a→d)))a

and d fix = fix g
and C fix = C + (a → d fix)
then

(i) (fix HL
C)a = d fix

(ii) fix HL
C = fix HL

C fix

Proof

Steps -
(1) show that d � dlhs ⇒ g(d) � dlhs

where dlhs = (fix HL
C)a

Proof step 1
(1.1) d � dlhs ⇒ fix HL

C |dom C + (a→d) � C + (a→d)
(1.2) ⇒ HL

C + (a→d) fix HL
C � fix HL

C
(1.3) ⇒ fix HL

C + (a→d) � fix HL
C

(1.4) ⇒ HL
C fix HL

C + (a→d) � HL
C fix HL

C = fix HL
C

(1.5) ⇒ g(d) � dlhs

QED (1)
(2) ⇒ d fix = fix g � dlhs

(3) ⇒ fix HL
C fix

� fix HL
C

(4) let I = fix HL
C fix

prove that HL
C I = I

(4.1) (HL
C I)a = d fix

– immediate from def’n of g and g(d fix) = d fix

(4.2) a' Î a ⇒ (HL
C I)a' = (HL

C fix
I)a'

QED (4)
(5) thus fix HL

C fix
= I � fix HL

C – minimality of fix HL
C

QED (ii)
(6) fix HL

C = HL
C (fix HL

C) = HL
C (fix HL

C fix
)

⇒ (fix HL
C)a = g(d fix) = d fix

QED (i)

QED theorem

Note the various properties of HL
C that have been used through this proof.

Step 1.2 uses the fixing property of LC, that is:

I | dom C � (= , =<) C ⇒ I � (= , =<) LC I

and the absorption property of LC and HL
C

LC + (a→d) LC = LC + (a→d) = LC LC + (a→d)

⇒ HL
C + (a→d) = LC + (a→d) HL

C

We will need a similar result for the slightly different iterating function which we will use later for general
functions.

Step 1.3 uses the property of fixed points

F f � f ⇒ fix F � f

and requires that HL
C + (a→d) be monotonic.

-15-

6. Pending analysis for general functions

6.1. Need for a bounding function

As we’ve said above, not all function definitions are free of self application hence we must produce a more
complex analysis to deal with this case. We will need to force interpretations to agree with the assumed
configuration in a way that leaves them monotonic. We must however be very careful in the way we do this
however. We might consider using the ceiling function to normalise interpretations (where ceiling(I) is
the least monotonic interpretation greater then or equal to I), This however implies a global analysis of the
interpretation and is not suitable for a pending analysis algorithm. So we must beware on two points

• Montonicity - intermediate results must be monotonic

• Locality - applying the result of a functional at a point must depend on just a few values of the func-
tionals argument.

The incremental fixed point theorem below instead makes use of a "bounding" function that constrains
interpretations to agree with a configuration but does not use any information except the value of the inter-
pretation at the point of interest, and the configuration itself, satisfying both constraints. This leads to an
effective (but inefficient) algorithm. However, having proved the basic algorithm correct, various
improvements are apparent.

We will have to prove properties of the bounding function BC similar to those required for the limiting func-
tion LC in the previous section, such as the functions which are its fixed points, absorption properties.
These will then be used to prove properties of the constrained iterator HC = BC H necessary to prove an
iterative fixed point theorem which should by now be familiar. This will be used to prove the correctness of
a variant of pending analysis in a proof which again should be familiar!

In general all the results proved seem obviously true, however some need surprising care, hence the slow
build up from properties of configurations, to those of the bounding function, those the iterator and then
finally the fixed point theorem itself.

6.2. Configuration operators

Before describing the bounding function itself, we need a few new operators on configurations. For any
configuration C we define C� and C⊥ as follows:

C� and C⊥ are total
C�(a) =

a'�a
∧ C (a')

C⊥(a) =
a'�a
∨ C (a')

We can think of C� as the greatest total monotonic configuration below C, and similarly C⊥ is the least
above C. That is:

for all total and monotonic C ',
C >> C ' ⇒ C� � C '
C << C ' ⇒ C⊥ � C '

These operators preserve some of the ordering properties of the configurations.

-16-

Lemma

(i) C << C ' ⇒ C⊥ � C '⊥

(ii) C >> C ' ⇒ C� � C '�

Proof

The two results are duals so we prove the former
C⊥ =

a'�a
∨ C (a')

�
a'�a and a'edom C

∨ C ' (a')

�
a'�a
∨ C ' (a')

= C '⊥
QED (i)

QED lemma

Lemma

C � C ' ⇒ C⊥ � C '⊥ and C� � C '�

Proof

C � C ' � C << C ' and C ' >> C
⇒ C⊥ � C '⊥ and C '� � C�

– applying (i) and (ii) above

QED lemma

Lemma

C ⊆ C ' ⇒ C⊥ � C '⊥ and C� � C '�

Proof

C ⊆ C ' � C << C ' and C >> C '
⇒ C⊥ � C '⊥ and C� � C '�

– applying (i) and (ii) above

QED lemma

Lemma

C monotonic ⇒ C�|domC = C

C⊥|domC = C

C⊥ � C�

Proof

first two trivial.
last simple too -
∀ a, a', a'' e Appl st a' � a � a''

a', a'' e dom C ⇒ C (a') � C (a'') – monotonicity of C

thus
a'�a
∧ C (a') �

a''�a
∨ C (a'')

that is C⊥(a) � C�(a) as required

QED lemma

The eventual algorithm will work by incrementally adding to the set of assumptions. As we need to retain a
monotonic configuration we need to add in such a way as to preserve monotonicity.

-17-

Definition - C ⊕ (a- > d)

dom C ⊕ (a- > d) = (dom C) + { a }
C ⊕ (a- > d)|dom C = C
C ⊕ (a- > d)(a) = (d ∧ C�(a)) ∨ C⊥(a)

Lemma

C monotonic ⇒ C ⊕ (a- > d) also monotonic
C ⊆ C ⊕ (a- > d)
C ⊕ (a- > d) is monotonic (�) as a function of d

Proof - trivial

6.3. The bounding function

Now we can define the bounding function in terms of C� and C⊥ :

Definition

BC (I) = (I ∧ C�) ∨ C⊥

For monotonic C the order of bounding is not important as (the above lemma) C⊥ � C�. Note also that BC
has good locality properties, in order to work out (BC I)|a one only needs to know the value of I at a and
the value of the configuration.

We prove sev eral lemmas, the first three regarding the fixed points of BC, and after that an absorption prop-
erty. These will be used in the same way as the corresponding properties for LC in the non-self applicatory
case. Finally we will prove the necessary monotonicity properties of BC.

Lemma - fixing

C monotonic ⇒ ∀I BC (I)|dom C = C

Proof

let I ' = BC (I)
∀ a e dom C

C�(a) = C (a) and C⊥(a) = C (a)
⇒

I '(a) = (I (a) ∧ C�(a)) ∨ C⊥(a)
= C (a)

QED lemma

-18-

Lemma - fixed points of BC

∀ C monotonic and I monotonic
(i) I |dom C � C ⇒ BC (I) � I
(ii) I |dom C � C ⇒ BC (I) � I
(iii) I |dom C = C ⇒ BC (I) = I

Proof

Clearly (i) + (ii) ⇒ (iii)
Also (i) and (ii) are duals of one another, hence we only need to prove (i)

I |dom C � C � C << I
⇒ C⊥ � I⊥ = I– lemma and I total and monotonic
⇒ BC (I) = (I ∧ C�) ∨ C⊥

= (I ∨ C⊥) ∧ C� – C monotonic
= I ∧ C� � I

QED (i)

QED lemma

Lemma - identity

B{} = id

Proof - special case of the above

Lemma - absorption

C ' monotonic and C ⊆ C ' ⇒ BC ' BC = BC ' = BC BC '

Proof

By previous lemmas C� � C '� and C⊥ � C '⊥
The proof of both results then follows by juggling the order of ∧s and ∨s
We will prove the first result only as the proofs are so similar.

BC ' BC (I) = (((I ∧ C�) ∨ C⊥) ∧ C '�) ∨ C '⊥

= ((I ∧ C�) ∨ C⊥ ∨ C '⊥) ∧ C '� – C ' monotonic
= ((I ∧ C�) ∨ C '⊥) ∧ C '� – C⊥ � C '⊥

= (I ∧ C� ∧ C '�) ∨ C '⊥ – C ' monotonic
= (I ∧ C '�) ∨ C '⊥ – C� � C '�
= BC ' (I)

QED lemma

In particular if C is monotonic we have :

BC ⊕ (a->d) BC = BC ⊕ (a->d)

If we are to use BC in fixed point constructions we also need monotonicity:

-19-

Lemma

BC is monotonic for any C

Proof

say I1 � I2

let I1' = BC (I1), I2' = BC (I2)
∀ a e Appl I1(a) � I2(a) ⇒

I1'(a) = (I1(a) ∧ C�(a)) ∨ C⊥(a)
� (I2(a) ∧ C�(a)) ∨ C⊥(a) = I2(a)

QED lemma

Note that this proof applies to all C and I not just monotonic ones. However, if C is not monotonic then
BC (I) will not be monotonic, even when I is.

Lemma

BC is monotonic as a function of C (with the � ordering on Config) - again trivial

Note that BC is not monotonic with respect to the ⊆ and << orderings on Config.

6.4. Constrained iterator

To find the fixed point of H we can iterate using it and starting at ⊥. Pending analysis uses a constrained
iterator, and we obtain this using the bounding function.

Definition

HC = BC H

This inherits obvious monotonicity properties:

Lemma

HC (I) is monotonic both as a function of I and of C
H{} = H
C � C ' ⇒ HC � HC '
C ⊆ C ' ⇒ BC ' HC = HC ' = BC HC '

Proof

all follow straight-forwardly from the corresponding properties of BC

QED lemma

The second two of these properties are reflected in their fixed points:

fix H{} = fix H
C � C ' ⇒ fix HC � fix HC '

It seems obvious that if we add an extra assumption to a constrained iterator that is bigger or smaller than
the actual value at the fixed point, then the resulting fixed point of the new iterator will be likewise too big
or small. The following lemmas prove this, first by proving a similar property for single applications, and
then for the fixed points. Because it is the minimal fixed points we are interested in the proofs are not
duals, and have a very different form.

-20-

Lemma

(i) (HC (I))a � d ⇒ HC ⊕ (a->d)(I) � HC (I)
(ii) (HC (I))a � d ⇒ HC ⊕ (a->d)(I) � HC (I)
(iii) (HC (I))a = d ⇒ HC ⊕ (a->d)(I) = HC (I)

Proof

(i) + (ii) ⇒ (iii)
Also (i) and (ii) are duals, so we need only prove (i)
let d ' = (H(I))a, d '' = (HC (I))a

then d '' = (d ' ∧ C�(a)) ∨ C⊥(a)
⇒ d '' = (d '' ∧ C�(a)) ∨ C⊥(a)
so d � d '' ⇒ C ⊕ (a- > d)|a � d '' - monotonicity of ∨ and ∧

Also (HC I)|dom C = C
⇒ (HC I)|dom C ⊕ (a->d) � C ⊕ (a- > d)
⇒ BC ⊕ (a->d) (HC I) � HC I – fixed points of BC ⊕ (a->d)

That is HC ⊕ (a->d) (I) � HC (I) – absorption
QED (i)

QED lemma

Lemma

(fix HC)a � d ⇒ fix HC ⊕ (a->d) � fix HC

Proof

let I = fix HC
then

(HC (I))a � d
⇒ HC ⊕ (a->d)(I) � HC (I) = I – above lemma
⇒ fix HC ⊕ (a->d) � I = fix HC

QED lemma

Lemma

(fix HC)a � d ⇒ fix HC ⊕ (a->d) � fix HC

Proof

Not a dual of the above!! - because fix is minimal fixed point.
Consider any J such that -

J � fix HC ⊕ (a->d) and J � fix HC
we want to prove that -

HC (J) � HC ⊕ (a->d)(J)
now J � fix HC ⇒ (HC J)a � d

⇒ HC ⊕ (a->d) J � HC J
– above lemma

QED HC (J) � HC ⊕ (a->d)(J)
so starting with J = ⊥ we can prove inductively that

fix HC ⊕ (a->d) � fix HC as required

QED lemma

-21-

Lemma

(fix HC)a = d ⇒ fix HC ⊕ (a->d)(I) = fix HC (I)

Proof

By applying the above two lemmas.

QED lemma

6.5. Incremental fixed point theorem

Theorem - incremental fixed point theorem

let g(d) = (HC (fix HC ⊕ (a->d)))a

and d fix = fix g
and C fix = C ⊕ (a → d fix)
then

(i) (fix HC)a = d fix

(ii) fix HC = fix HC fix

Proof

First note that (ii) follows from (i) and the above lemma, therefore we only
strictly need to prove (i), in fact we proceed with a little of each.
Steps -
(1) show that d � dlhs ⇒ g(d) � dlhs

where dlhs = (fix HC)a

Proof step 1
d � dlhs ⇒ fix HC ⊕ (a->d) � fix HC

– by above lemma
⇒ HC fix HC ⊕ (a->d) � HC fix HC = fix HC

– monotonicity of HC
⇒ g(d) = (HC fix HC ⊕ (a->d))a � (fix HC)a

QED (1)
(2) ⇒ d fix = fix g � dlhs

(3) ⇒ fix HC fix
� fix HC

– by above lemmas

(4) let I = fix HC fix

prove that HC I = I
(4.1) show (HC I)a = d fix

– immediate from def’n of g and g(d fix) = d fix

(4.2) ⇒ HC fix
I = HC I

– from previous lemma
(4.3) That is I = (HC I)

QED (4)
(5) thus fix HC fix

= I � fix HC – minimality of fix HC

QED (ii)
(6) fix HC = HC (fix HC) = HC (fix HC fix

)
⇒ (fix HC)a = g(d fix) = d fix

QED (i)

QED theorem

-22-

6.6. The algorithm

The algorithm is virtually identical to that for XL
C -

XC : Appl → D

XC |a = C |a a e dom C
XC |a = fix h otherwise

where
h(d) = BndC (a)(H XC ⊕ (a->d))a

fix is used here to mean the computationally effective function -

fix : (D → D) → D

fix(g) → fixitg(⊥)

fixitg(d) →
let dnew = g(d)
if dnew = d

then d
else fixitg(dnew)

If the domain is finite and g always terminates then fix(g) terminates. Further if g is monotonic then this
function yields the minimum fixed point of g, and the formula for dnew can be simplified to g(d). Note
also that if D is a binary domain then the first application of g yields the fixed point. That is -

D binary ⇒ fix g = g(⊥)

With this observation the algorithm collapses to simple pending analysis.

BndC is the one point equivalent of BC, that is -

BndC (a)(d) = (d ∧ C�(a)) ∨ C⊥(a)

It is used to emphasise the locality of the calculation (it only involves C and a).

We now prove termination and correctness of XC

6.7. Termination

Theorem

XC terminates

Proof

Induction on size of C
We assume that XC terminates for any C when || C || > C

Base case C total
In this case XC = C ev erywhere, and thus terminates.

QED base case

-23-

Inductive case, prove XC|a terminates for all a,
there are two cases
either a e dom C

whence XC (a) → Ca and terminates
or XC (a) → fix h

where h(d) = BndC (a) H XC ⊕ (a->d)

now || C ⊕ (a- > d) || � || C ||
so XC ⊕ (a->d) terminates by induction, H terminates as given,
also BndC (a) terminates as it has only to search a finite
configuration and perform ∨s and ∧s.
thus h terminates.
and fix always terminates on finite domains.
(Strictly need to prove h monotonic, this falls out of the correctness proof)
Thus XC (a) terminates.

QED inductive cases

QED theorem

6.8. Correctness

By correctness, we mean that XC yields the same result as fix HC, and in particular for any application of
interest X{}(a) = (fix H)a. The proof is nearly identical to previous proofs.

Theorem

XC = fix HC

Proof

Induction on size of C
We assume that XC = fix HC for any C when || C || > C

Base case C total
In this case HC is constantly C and thus fix HC = C
Similarly XC is constantly C

QED base case

-24-

Induction
W want to prove XC (a) = (fix HC)a

there are two cases :
either a e dom C

XC (a) → Ca

but fix HC|dom C = C
QED a e dom C

or a ‰ dom C
XC (a) → fix h

where h(d) = BndC (a) (H XC ⊕ (a->d))a

now || C ⊕ (a- > d) || � || C ||
⇒ H XC ⊕ (a->d) = H fix HC ⊕ (a->d)

and BndC (a) ((H(fix HC ⊕ (a->d)))a) = (BC (H(fix HC ⊕ (a->d)))a

That is h here is equal to g of the incremental fixed point theorem,
and as g is monotonic the fix h is the minimal fixed point of g.
We thus apply part (i) of the theorem :-
XC (a) = fix g = (fix HC)a

QED a ‰ dom C
QED inductive cases

QED theorem

7. An efficient algorithm for configuration searching

The speed of the above algorithm depends critically on the speed of the Bnd function and (equivalently)
augmentation C ⊕ (a- > d). A simple linear search of the configuration for all elements greater than or
less than a given element will be too slow for large configurations. The simple limiting function LC is easy
to implement as this involves only looking for an exact match, it is the finding of related elements that is of
difficulty. An algorithm is proposed that uses the lattice structure of the parameter domain as a means of
structuring the configuration storage. Searching for elements above or below a certain element then
involves a walk through the lattice starting at the top or bottom. If the lattice were complete, corresponding
to a complete configuration, we could choose any path when there were several elements less than the target
(assuming a walk down) as they would all eventually lead to the same target. If the configuration is not
complete then we need to explore all paths (although some would later meet) in order to find all elements
above the one of interest.

We can clearly index the configuration directly by the particular function, hence we can assume we are
dealing with a configuration that only represents one function, and the Appl domain is identical to the argu-
ment domain Da.

C = Da ∂ Dd

The argument and algorithm is in no way dependent on this assumption as the application domain Appl has
a perfectly good lattice structure of its own, however this would probably be a less efficient use of the algo-
rithm. For other specific domains there may be similar specialisations that will improve performance.

We will look for a structure (call it Env) that represents the configuration. We will need several operations
from this structure.

(i) Find C� =
a' � a
∨ C (a')

(ii) Find C⊥ =
a' � a
∧ C (a')

(iii) Find C ⊕ (a- > d) = (d ∧ C�(a)) ∨ C⊥ (a)

That is we will want functions:

-25-

upper_bound : Env x Da → Dd

lower_bound : Env x Da → Dd

augment : Env x Da x Dd → Env

We will want these to mirror the actual operations, that is, if env represents C then:

upper_bound(env, a) = C� (a)
lower_bound(env, a) = C⊥ (a)
augment(env, a, d) represents C ⊕ (a- > d)

Env will both represent the configuration itself, but also it will contain information specifically to improve
the speed of the searches implied by the ∧s and ∨s.

We represent the configuration value by a set of nodes, each one corresponding to an argument in the
domain of C.

Env ≡ nodes : IP Node
arg : Node → Da

val : Node → Dd

where
dom arg = dom val = nodes
range arg = dom C
arg is injective
∀ n e nodes val(n) = C (arg(n))

In order to search this structure, we will need to cross index these nodes giving for each node the set of
nodes with arguments "just above" and "just below". This will give the nodes a structure like the lattice
dom C.

Env + = u p_nodes : Node → IP(Node)
down_nodes : Node → IP(Node)

where
dom up_nodes = dom down_nodes = nodes
∀ n e nodes u p_nodes(n) ⊆ nodes

down_nodes(n) ⊆ nodes
∀ n, n' e nodes n' e up_nodes(n) ⇒

not ∃ n'' e nodes st arg(n) < arg(n'') < arg(n')
∀ n, n' e nodes n' e down_nodes(n) ⇒

not ∃ n'' e nodes st arg(n') < arg(n'') < arg(n)

We will need to record the topmost and bottommost nodes in order to start searches. We can do this explic-
itly :

Env + = top_nodes : IP(Node)
bottom_nodes : IP(Node)

where
top_nodes = { node e nodes | up_nodes(node) = {} }
bottom_nodes = { node e nodes | down_nodes(node) = {} }

However this will lead to special cases when we are dealing with elements at the top or bottom of Env. An
alternative is to add special elements to Da and Dd , a "super top" (�−) and "super bottom" (⊥−). These will
sit above and below the normal top and bottom and thus any real argument will sit below the top node and
above the bottom. So instead of the sets top_nodes and bottom_nodes we will have:

-26-

Env + = top_node : Node
bottom_node : Node

where
top_node, bottom_node e nodes
arg(top_node) = �−a

arg(bottom_node) = ⊥−a
val(top_node) = �−d

val(bottom_node) = ⊥−d

All three operations we wish to carry out depend on first finding the nodes directly above and below the tar-
get argument. That is we want functions :

above : Env x Da → IP(node)
below : Env x Da → IP(node)
where

above(env, a) ⊆ nodes
below(env, a) ⊆ nodes
not ∃ n e nodes, n'eabove(env, a) st a < arg(n) < arg(n')
not ∃ n e nodes, n'ebelow(env, a) st arg(n') < arg(n) < a

Given such functions we can easily specify the operations we want in terms of them.

upper_bound : Env x Da → Dd

upper_bound(env, a) =
n e above(a)

∧ val(n)

lower_bound : Env x Da → Dd

lower_bound(env, a) =
n e below(a)

∨ val(n)

augment : Env x Da x Dd → Env
let A = above(a), B = below(a)
if A = B = { n } – that is a e dom C

augment(env, a, d) = env
otherwise – adding a new element

augment(env, a, d) = env'
where

dom env' = dom env + { n }
arg'(n) = a
val'(n) = d
up_nodes(n) = A
down_nodes(n) = B
arg'(n') = arg(n') n' Î n
val'(n') = val(n') n' Î n
up_nodes'(n') = up_nodes(n') n' Î n and n' ‰ B
up_nodes'(n') = up_nodes(n') - A + { n } n' e B
down_nodes'(n') = down_nodes(n') n' Î n and n' ‰ A
down_nodes'(n') = down_nodes(n') - B + { n } n' e A

It only remains to define effective algorithms for above and below. In fact, we can define two algorithms
for each, depending on when we start at the top or the bottom.

-27-

above↓Env (a) = above↓Env (a, top_node)
above↓Env (a, b) = let S = ∪ { above↓Env(a, c) | c e down_nodes(b) and a � arg(c) }

if S = {}
then b
else S

below↓
Env (a) = below↓

Env (a, top_node) or =
beabove↓Env (a)

∪ below↓
Env (a, b)

below↓
Env (a, b) = if arg(b) � a and ∀ceup_nodes(b) not arg(c) � a

then b - that is a e dom C
else if arg(b) � a
then {}
else

cedown_nodes (b)
∪ below↓

Env (a, c)

below↑
Env is the dual of above↓Env, working from the bottom, and above↑Env is the dual of below↓

Env. The
choice between using upward or downward searches could be made once and for all, or could be made
depending on the exact value of a.

The cost of an application of above↓Env is proportional to the number of nodes with arg(node) � a. In
the worst case (looking for ⊥) this is || nodes || which is as bad as the simple search (but with a worse con-
stant of proportionality). Typical cases are far better. The worst kind of domain is a simple linear one,
when one visits half the nodes on average. However the argument domains will usually be product
domains and here the behaviour is much better. For a product of n linear domains one would visit on aver-
age n 1

2
n

of the nodes. Similarly the cost of below↑
Env is proportional to the number of nodes with

arg(node) � a with a worst case looking for �.

This suggests that by examining where the target lies we could protect ourselves against worst case behav-
iour, but because the exact cost depends not only on a but also dom C it may not be worth it.

The above cost assumes that the unions can be performed in linear time implying a complex set representa-
tion (eg. hashing), but an imperative version of the algorithm would run down the paths in turn and mark
nodes encountered which could then be avoided by subsequent paths.

In the incremental fixed point algorithm, the applications of BndC and C ⊕ (a- > d) come in the expres-
sion fix h where h is defined as :

h(d) = BndC (a) (H XC ⊕ (a->d))a

Now on each iteration of fix we need to find out above(a) and below(a) to work out C�(a) and C⊥(a)
in Bnd(a) and also to calculate C ⊕ (a- > d). These are the same both for these three uses in each itera-
tion, but also between iterations. Therefore these can be calculated once and then reused on each iteration.
That is we only need one configuration lookup for each fixed point calculation. Further as the number of
iterations of the fixed point is itself on average half the domain height, cost of configuration search is likely
to be far less than the cost of iteration. If you include the reduction in the number of iterations because we
start above bottom (typically very near the fixed point), the algorithm looks very respectable.

If the height if the configuration is greater than the height of the result domain, it may be worth using fron-
tier analysis techniques to compress "flat" chains. However care must be taken to keep note of those appli-
cations that are in the configuration but which are holophrasted for efficiency. For some algorithms even
this may not be necessary.

In this section we have seen how configurations can be stored and accessed efficiently with a worst case be-
haviour comparable with simple searching, but with typical performance far better. Howev er, it is also
noted that we can reuse most of the work so that searches are relatively infrequent in the incremental fixed
point algorithm, hence even worst case behaviour is likely to be acceptable.

-28-

8. Higher order analysis using term algebras

The two weaknesses of pending analysis were the limitation on the domain, and that it is a first order analy-
sis. We hav e seen that it can be modified to cope with large domains, and thus of course if necessary func-
tion domains. However, these are large and comparisons over the domains, either of equality (for XL

C) or
inequality (for XC) will be very expensive. In general, the number of distinct partial applications will be
small compared to the total number of functions available. It would be nice therefore to use the terms
describing the functions, instead of the functions themselves, and use these as the pending functions. For
example, in the analysis of map f where f is some function, we would pend the application of map to the
identifier f. This is equivalent to doing pending analysis over a domain of terms, and as the analysis is cor-
rect for all domains it is correct in particular for term algebras.

The only misgiving one might have, is that we are distinguishing terms that may be the same. One doubt
arising from this is the impact on the efficiency of the algorithm as we miss some pending calls, however
this is likely to be far less than the cost of full function comparison. More problematical is that it might
affect the correctness of the algorithm. We know that it is correct within its own domain (term algebras),
but is it correct in the original higher order domain. In fact this is ok, as the term algebra is a reified inter-
pretation (opposite of abstract interpretation) of the original domain and functions. That is if Term is the
evaluation operation from terms to values we have:

∀ f , x Term(f) Term(x) = Term(f x)

Of course the pending analysis only works if the domains are finite, the term domain is in principle infinite.
Does this invalidate the procedure? In many cases it does not, as the terms generated are strictly bounded,
the cases where pending analysis will produce unbounded terms are rare. They can only occur where a
function can be applied to an irreducible term which includes a partial application of itself. The possibility
of this can be detected by static analysis (yet more abstract interpretation) but this is not essential as
dynamic measures are just as effective. When a term is generated which exceeds a certain complexity, we
can substitute a "super-top" element (�−) that has the property that any irreducible term containing it
becomes super-top too, and when it is applied to anything, or is the argument to a primative operation, the
result is larger than any other such application. That is:

�−(a) =
f � �−
∨ f (a)

f (�−) =
a � �−
∨ f (a)

Or alternatively and cheaper, but less exact:

�−(a) = �−
f (�−) = �−

With either of these we loose the exact correspondence between the normal interpretation and the reified
term algebra, however both of these yield a relationship

∀ f , x Term(f) Term(x) � Term(f x)

Which is sufficient to yield a safe, but inexact, result of pending analysis. This is no worse in its effect than
the pessimizing suggested by Young and Hudak to reduce evaluation time, and can similarly be varied by
adjusting the acceptable complexity of terms before "topping out".

We do not need to change our proofs at all, except that proofs of properties of functionals defined using
terms must include an apply operator, which is in fact monotonic on these domains and does not alter their
correctness.

9. Fixed point properties of configurations

Young and Hudak suggest memoing the results of pending analysis as an optimisation. The resulting algo-
rithm no longer has the simple functional form used previously, and it needs additional proof. However the
memoing does suggest that one is iterating estimates to a whole configuration, rather than just at a point.
This section looks at the fixed point properties of configurations in order to establish a general method of

-29-

proving correct optimisations of basic pending analysis.

C is a fixed configuration of H if
∀I C ⊆ I ⇒ C ⊆ H I

Equivalently (and easier to prove!)

C is a fixed configuration of H if
C ⊆ H C

Theorem

if C is a fixed configuration
∃ I a fixed point of H (not necessarily minimal)

st C ⊆ I

Proof

let I0|dom C = C
I0|a = ⊥ elsewhere
let Ii+1 = H Ii

then
C ⊆ I0

∀i C ⊆ Ii ⇒ C ⊆ Ii+1

⇒ C ⊆ ∨ Ii

and ∨ Ii is a fixed point of H

QED

So if C is a fixed configuration and C ⊆ fix H then we can conclude that C = fix H |dom C.

This is very useful for proving algorithms correct. We need only prove that any value obtained is part of a
fixed configuration to know that the value is safe (i.e. above the fixed point). This is an end state result and
is not dependent on the internal workings of the algorithm. To prove the algorithm optimal (that is equal to
the minimum fixed point) will typically involve a process argument that the minimal fixed point is never
exceeded, however since it is a weak (i.e. �) argument it is easier to work with than an exact argument and
it is thus easier to involve clever heuristics.

If we are happy with safe results, we need only prove that

∀I C >> I ⇒ C >> H I
or

C >> H C

whence by a similar proof to the above we hav e C >> fix H

Fixed configurations can be related to minimal function graphs.6 Jones and Mycroft describe minimal func-
tion graphs in terms of a domain with two "bottom" elements: ! representing non termination and ⊥ repre-
senting "never called". Roughly their ! corresponds to values of ⊥ in the configuration, and their ⊥ to val-
ues which are undefined.

10. A non-deterministic algorithm based on configurations

The pending analysis algorithms proved hav e been functional, they hav e not involved memoising as sug-
gested by Young and Hudak, and have sometimes been conservative (BndC may reduce the value returned).
This is because they hav e relied on proving that intermediate results have been equal to fixed points of con-
strained iterators. The various optimisations will typically yield results that are not exactly the fixed point
of the constrained iterator but lie between it and the actual fixed point required. We could go through all
the proofs again and prove the various optimised versions. The above result about fixed configurations
would make this process far easier. It is fairly obvious that if we take all the application result pairs from
the last iteration of all the various embedded fixed point calculations that they would form a fixed configu-
ration. we would thus only need to prove that all the values obtained are below the fixed point. This would

-30-

probably require a � version of the incremental fixed point theorem, but with all the lemmas developed
involving BC this would be easy.

An easy way to prove such optimisations is to prove correct a non-deterministic algorithm which includes
the optimisations of interest as special sub-cases. Rather than doing this for top-down pending analysis we
examine an alternative non-deterministic algorithm that is based around bottom-up evaluation of configura-
tions.

Define a sequence

let Ci be a sequence of configurations defined thus:
C0 any configuration such that C0 << fix H
for each i either
(1) choose a ‰ dom C, d � (fix H)|a

Ci+1 = Ci ↑ (a → d)
⇒ Ci+1 << fix H

(2) choose C ⊆ Ci

then choose C ' ⊆ H C
Ci+1 = Ci ↑ C '
⇒ Ci+1 << fix H

(3) choose any monotonic Ci+1 << Ci

⇒ Ci+1 << fix H

Obtain result

for any i choose C ⊆ Ci a fixed configuration
⇒ C ⊆ fix H

The operator ↑ is the symmetric upward sum, defined thus:

Define - C ↑ C '

dom (C ↑ C ') = dom C ∪ dom C '
(C ↑ C ')|a = C |a ∨ C '|a

The various algorithms used can all be seen as variants of this. Consider, for example, general pending
analysis with the bounding function. It uses the ⊕ operator, howev er this can be described as step 1 or 2
followed by step 3. To avoid saying this we will describe the variant of the algorithm using the ↑ operator.

The algorithm starts off with an empty configuration. Each time a new value is encountered step 1 is
executed with d = ⊥ then the fixed point calculation begins. Effectively doing multiples of step 2. As the
functional algorithm does not remember internal results of recursive calls, step 3 is effectively executed at
each function return. By simply omitting the "forgetful" step 3, we produce pending analysis with memo-
ing.

However, we can imagine far cleverer heuristics based on this algorithm. In general pending analysis can
spend effort calculating values that do not contribute to the final result (but are needed for intermediate val-
ues). If instead of pushing execution right down the call tree, we could as a first estimate return bottom, for
ev erything, then (if the pending value has been used) iterate on this value alone, only when this has stopped
do we go round the other values used to make sure they are correct. This means that some applications low
in the domain may not need to be iterated over. We can retain dependency information in order to decide
which values may have changed, and also remember critical paths, so that we can first iterate on applica-
tions likely to lead to an increase in the target application.

There are clearly many ways of approaching this, but typically algorithms will have one or more target
applications that they’re actually after. If the call graph of the application involves elements not in the con-
figuration, step 1 will be executed to extend it. Then by examining the call graph an application is chosen
as "pivot" and step 2 is iterated until stable or the result of the pivot increases enough to change one of the
targets. In order to execute step 2 of course the configuration is typically further extended etc.

-31-

Following these heuristics the fixed configuration output will be precisely the minimal function graph asso-
ciated with the target applications. Other values will have been calculated of course, as it is impossible in
general to calculate the minimal function graph without doing some "wasted" work.

A memoised algorithm, that is one without step 3 can be shown to terminate so long as one is reasonably
sensible about choices of C '. Algorithms using step 3 need separate proofs, but why bother? Possibly, in
some cases we could prove that certain applications will never be needed again and its worth reducing the
size of configuration, but its hard to believe that this will frequently be worthwhile.

By defining a non-deterministic algorithm we have left room for many different optimisations to basic
pending analysis, some of which may have improved typical behaviour. Strangely enough, we end up with
an algorithm far closer to a traditional fixed point calculation.

11. Conclusions

Proofs have been given of Young and Hudak’s pending analysis for non-self applicatory functions and of
the improved algorithm for general and higher order functions. In addition a new non-deterministic algo-
rithm has been presented and proved correct. This algorithm not only includes both pending analysis and
standard algorithms as special cases, but also lays the formal groundwork for more advanced algorithms.
This unification of approaches is especially encouraging as it gives a framework for future study.

An open problem is whether simple pending analysis is in fact correct for general functions. Examples,
such as in Appendix 7, make one very doubtful, however pending analysis does still work for this. It would
be nice to either form a true counter example or find a proof however the examples here show that such a
proof would be tortuous. My gut feeling is that perhaps it is correct in the binary case, but it is clear that
gut feelings in this area can be very misleading.

Appendix 1 - Recursion equations for multiple functions

We hav e called the domain of the function sought Appl as it is expected that it typically represents the
application of a function symbol to some arguments. Below is briefly outlined the formal basis of this.
None of the proofs depended on the well typedness of the operations involved, and if the relevant defini-
tions are initially well typed then the result of the various algorithms will themselves be well typed.

The abstract interpretation will be over some set of recursively defined functions mapping into finite lat-
tices. The functions form a signature < F , T , arity > :

F : a set of function symbols
T : a set of type symbols

arity : F → T * x T

The domains of interest are labelled by these types, and for convenience we consider also the disjoint sum
of these domains.

{ DT }TeT

D =
TeT
ÂDT

The set of all type correct applications of function symbols to members of D* we will call Appl:

Appl = { fd1d2. . dn | f eF and dieDTi
}

where
arity(f) = (T1, T2 . . Tn), T

This inherits a partial ordering from the domains:

fd1d2. . dn � f 'd1'd2'. . dn ' ≡ f = f ' and d1 � d1' and d2 � d2' dn � dn '

Any interpretation is a Â-algebra over this signature. And the set of all such interpretations we call Interp.

-32-

Interp = Appl → D

subject of course to the well typing condition:

∀a = fd1d2. . dneAppl, IeInterp
I (a) e DT

where arity(f) = (T1, T2 . . Tn), T

The recursion equations can be represented as a function on interpretations:

G : Interp → Interp

These equations are of course usually represented by terms over the function symbols, but we do not need
this additional structure for the first part of the analysis. The only properties we require is that G is mono-
tonic and continuous. (We will not need to invoke continuity in our arguments explicitly as all the domains
of interest are finite, and it will thus be implicitly true of all monotonic functions.)

The problem we are after solving is therefore finding fix G, the minimal fixed point of G.

Appendix 2 - Facts used about fixed points

In this paper we have used the fixed point operator (called fix) extensively. Its properties are well known,
and those used in the paper are summarise here.

The minimal fixed point of a function f is the smallest value x such that f (x) = x. Thus we have the
important conclusion that:

f (x) = x ⇒ fix f � x

A standard result is that the minimal fixed point of a function f is given by:

fix f = ∨ xi

where
x0 = ⊥
xi+1 = f (xi)

This depends on the function f being monotonic and continuous however, as the lattices we will consider
will always be finite the continuity condition need not concern us.

Tw o facts about fix that result fairly immediately from the above are:

(i) x � fix f ⇒ f (x) � fix f
(ii) (x � y ⇒ f x � y) ⇒ fix f � y
(iii) (x � fix f and x � fix g ⇒ f x � g x) ⇒ fix f � fix g
(iv) x � f (x) ⇒ x � fix f

Appendix 3 - Proof that non-self applicatory functionals defined by terms are fully monotonic

We want to prove that if a functional G is defined by terms and is not self-applicatory, then it is monotonic.
So we need to prove:

I � I ' ⇒ G I � G I '

Now if G is defined by non-self applicatory terms, for any a we have

G I |a = EvalI H1
a

Where H1
a is a non-self applicatory term. So it suffices to prove the more general theorem below:

-33-

Theorem

I � I ' and term is non-self applicatory
⇒ EvalI (term) � EvalI '(term)

Proof

By induction on depth(term)
Base case depth(term) = 0

term = d
EvalI (term) = d = EvalI '(term)

QED base case

Inductive case depth(term) > 0
there are two subcases
either term = op e1 . . en

where the ei are themselves non-self applicatory
depth(ei) < depth(term)
⇒ vi = EvalI (ei) � EvalI '(ei ') = vi '
⇒ EvalI (term) = � op{ vi } � � op{ vi ' } = EvalI '(term)

QED op e1 . . en

or term = f e1 . . en

where the ei are constant terms
⇒ vi = EvalI (ei) = EvalI '(ei ')
⇒ I ({ vi }) � I '({ vi })

QED f e1 . . en

QED inductive case

QED

Appendix 4 - Proof that all functionals defined by terms are � monotonic and pseudo-monotonic

To prove pseudo-monotonicity, we first prove a stronger result, namely monotonicity with respect to a new
relation �. The relation � is stronger than normal function comparison, but equivalent to it when either of
its arguments are monotonic.

Definition �
f � f ' ≡ ∀ a, a' a � a' ⇒ f (a) � f '(a')

Note how this differs from normal � relation which only covers a = a'. Similarly note how if either of f or
f ' is monotonic, we can introduce an intermediate "pivot" term (f (a') or f '(a) respectively) to prove �
from �.

� is not a true partial order in itself, as it is transitive, but not reflexive. The case where f � f is of inter-
est being exactly when f is monotonic. If we require a true partial order we can always add an "or equal"
condition to �.

f � f ' ≡ f � f ' or f = f '

The lattice formed by � has a rather complicated least upper bound operator:

a ∨� b = if a = b then a
else ceil(a) ∨ ceil(b)

The ceiling function means that it is non-local. The fixed point operator is better behaved, and if f is � (or
�) monotonic and the domain is finite then the standard fixed point operator can be used. Consider the
sequence

x0 = ⊥, xi+1 = f xi

This is � (or �) increasing and hence will terminate at the minimal fixed point of f . In the case of �

-34-

monotonicity, this means that this fixed point will be a monotonic function, even if the intermediate xi are
not.

As functionals defined by terms are � monotonic, I had at first hoped that this would give an easy proof of
simple pending analysis for general functions, unfortunately the limiting functional LC is not � monotonic,
and changes to make it so would mean something of at least the complexity of BC however, it does seem an
interesting ordering waiting for an application.

We prove � monotonicity first and then use this to prove pseudo-monotonicity as a special case.

� monotonicity

We want to prove that if a functional G is defined by terms it is � monotonic, that is:

I � I ' ⇒ G I � G I '

Now if G is defined by terms, for any a we have

G I |a = EvalI H1
a

So it suffices to prove the more general theorem below:

Theorem

I � I ' ⇒ ∀ term � term' EvalI (term) � EvalI '(term')

Proof

By induction on depth(term)
Base case depth(term) = 0

term = d , term' = d '
EvalI (term) = d � d ' = EvalI '(term')

QED base case

Inductive case depth(term) > 0
there are two subcases
either term = op e1 . . en, term' = op e1' . . en ', ei � ei '

depth(ei) < depth(term)
⇒ vi = EvalI (ei) � EvalI '(ei ') = vi '
⇒ EvalI (term) = � op{ vi } � � op{ vi ' } = EvalI '(term)

QED op e1 . . en

or term = f e1 . . en, term' = f e1' . . en ', ei � ei '
vi � vi ' as above
⇒ I ({ vi }) � I '({ vi ' }) - as I � I '

QED f e1 . . en

QED inductive case

QED

Pseudo-monotonicity

We want to prove that if a functional G is defined by terms it is pseudo-monotonic, that is:

I � I ' and either I or I ' monotonic ⇒ G I � G I '

But if I � I ' and either I or I ' is monotonic then I � I ' and thus G I � G I ' which implies (and is
equivalent in this case to) G I � G I '.

Appendix 5 - Properties of LC

We define LC for all configurations by:

Definition LC

-35-

dom (LC C ') = dom C '

LC C ' |a = Ca a e C
= C 'a otherwise

Lemma

LC is fully monotonic (<<) as a function Config → Config

Proof

C1 << C2

let C1' = LC C1, C2' = LC C2

dom C1' = dom C1 ⊆ dom C2 = dom C2'
a e dom C ⇒ C1'|a = C|a = C2'|a
a e dom C1 - dom C ⇒ C1'|a = C1|a � C2|a = C2'|a

QED

Lemma

LC is continuous (<<)

Proof

Consider { Cl }leL, CL = ∨ Cl
dom CL = ∪ Cl
CL|a = ∪ { Cl|a st a e dom Cl }
let Cl' = LC Cl, CL' = LC CL
dom CL' = dom LC CL = ∪ dom Cl = ∪ dom LC Cl'
a e dom C ⇒ CL'|a = C|a = ∪ Cl'|a
a e dom Cl - dom C ⇒ CL'|a = CL|a = ∪ Cl|a = ∪ Cl'|a

QED

Appendix 6 - Functions defined using self partial application

Higher order pending analysis using terms had to be inexact where there was no bound to the complexity of
terms produced. This can occur quite easily (and usefully) in weakly typed functions, for instance map_n
that takes a function to be applied to a list of lists of depth n and returns a homomorphic list of lists.

map_n f 0 l = f l
map_n f n l = map_n (map f) n-1 l

map is the normal function applying f to each element of a list. An application of map_n f n l will
lead to a term of the form

map_n (map (map (... (map f) ...)) 0 l

Where the depth of nesting of maps is n, before it is finally reduced. Without limiting the depth of terms
acceptable, pending analysis would not terminate for this example.

map_n is of course not Milner typeable, there are however type correct functions which exhibit similar
properties. Let twice be a function, that takes a function and an argument, and applies the function twice

twice : (* -> *) -> * -> *

twice f x = f (f x)

We then use this to define a function lots that applies a function to an argument lots of times

-36-

lots : nat -> (* -> *) -> * -> *

lots 0 f x = f x
lots n f x = lots n-1 (twice f) x

The application lots n f x will lead to a term:

lots 0 (twice (twice .. (twice f) ..)) x

Where there are n applications of twice (leading to 2n applications of f!), before it eventually reduces.
Again pending analysis would fail without a size limit on the term algebra.

Typically functions defined in this manner are rather obtuse. Consider two more such functions:

lots_more : nat -> (* -> *) -> * -> *

lots_more 0 f x = f x
lots_more n f x = lots_more n-1 (lots_more n-1 f) x

strange : (nat -> nat) -> nat -> nat

strange f x 0 = f x
strange f x y = strange f x y-1 y odd
strange f x y = strange (strange f y-1) x y/2 y even

Appendix 7 - a nasty non-self applicatory binary function

We hav e not proved that simple pending analysis works for simple binary functions works, but here is an
example where a "reasonable" intermediate result fails. If pending analysis is applied to this function, it
does however work!

The reasonable result is:

G GA + {a} fix G|a � (G GA fix G)|a

Consider the function:

f (x, z) = z ∨ f (f (x, z), �)

Clearly if G is the generator fix G = �, howev er we find that

(G Ga' + a fix G)|a � (G Ga' fix G)|a
where

a = �, ⊥
a' = �, �

This is the opposite of our intuition that fixing some values to ⊥ reduces the final result. The reason for
this is of course the self applicatory expression f (f (x, z), �), on the left hand side this leads to an eval-
uation of f (a''), where a'' = ⊥, �, which is not pending, hence reduces to �, this value then bubbles up
to give a final answer of �. On the right however the recursive call is to f (a'), which leads to a result of
⊥.

The exact call chain is below, the function applications are labelled with their level numbers and primed on
the right, so that f1' is an outer most call on the right, whereas f3 is an innermost (fix G) call on the left.

LHS = f1(a) → ⊥ ∨ f2(f2(a), �)
→ ⊥ ∨ f2(⊥, �) - a pending
→ ⊥ ∨ f3(⊥, �) - a'' not pending
→ ⊥ ∨ � → �

-37-

RHS = f1'(a) → ⊥ ∨ f2'(f2'(a), �)
→ ⊥ ∨ f2'(f3'(a), �) - a not pending
→ ⊥ ∨ f2'(�, �)
→ ⊥ ∨ ⊥ - a' pending
→ ⊥

References

1. Jonathon Young and Paul Hudak, “Finding fixpoints on function spaces,” YALEU/DCS/RR-505, Yale
University, Department of Computer Science (December 1986).

2. P. Cousot and R. Cousot, “Static determination of dynamic properties of programs” in Proceedings of
the 2nd International Symposium on Programming (1976).

3. A. Mycroft, Abstract interpretation and optimising transformations for applicative programs, PhD
thesis, University of Edinburgh (1981).

4. S. Abramsky and C. Hankin, Abstract interpretation of declarative languages, Ellis Horwood (1987).

5. C. Clack and S. Peyton-Jones, “Finding fixpoints in abstract interpretation” in Abstract interpretation
of declarative languages, ed. S. Abramsky & C. Hankin, pp. 246-265, Ellis Horwood (1987).

6. N.D. Jones and A. Mycroft, “Data flow analysis of applicative programs using minimal function
graphs” in Proceedings 13th Symposium on Principles of Programming Languages, pp. 296-306,
ACM (January 1986).

Finding fixed points in non-trivial domains:
Addendum to York Report 107

Alan Dix

Full Reference
A. J. Dix (1988). Addendum to York Report 107: Finding fixed points in non-trivial domains: proofs
of pending analysis and related algorithms. YCS 107 (addendum), Dept. of Computer Science, Uni-
versity of York.
http://alandix.com/academic/papers/fixpts-YCS107-88/.NH 1 Introduction

In York Report 107, I proved the correctness of pending analysis for non-self-applicatory functions, over
both binary and general finite (height) domains. I also proved slight variants of basic pending analysis, that
make better use of the monotonicity of functions correct for all functions defined using monotonic prima-
tives. This later algorithm could be seen as an optimisation of the basic algorithm as it in general would
require fewer iterations, but depending on the method used to represent pending environments the simpler
algorithm may be better. The report failed to prove the basic algorithm correct for self-applicatory func-
tions, even over the original binary domain; on the other hand it also failed to find any counter examples.
Since then I have found a simple proof of the correctness of binary pending analysis, making use of the cor-
rectness of the "improved" algorithm. A similar proof works for all finite domains, but needs yet another
incremental fixed point theorem! These proof are given below.

The proofs are split into two parts:

Optimality - the resulting function is no greater than the minimal fixed point

Safety - it is no lower

Safety is clearly most important for abstract interpretation, but is the more difficult. Optimality is proved in
both the binary and finite domain case by direct comparison with the minimal fixed point. It is "obviously"
true at one level, as the pending analysis makes values smaller, but it also makes the intermediate function-
als non-monotonic whence nothing is obvious anymore.

Both optimality and safety proofs depend on the pseudo-monotonicity of the defining functional, that is, if
f � g and either f or g is monotonic then G f � G g. There are examples of monotonic functionals
which are not pseudo-monotonic, for example:

G : (2 → 2) → (2 → 2)

G f = � f monotonic
= ⊥ otherwise

G is a monotonic functional, with fixed point f = �, unfortunately pending analysis yields the answer
f = not, which is neither monotonic, fixed nor safe. However, any functional which is defined using
terms and monotonic primatives is pseudo-monotonic. (That is all functions produced by programs.)

Because pseudo-monotonicity requires one of the functions to be monotonic, the proofs for pending analy-
sis have to work by comparing its non-monotonic intermediate functions with other monotonic functions
that have known properties. In the case of optimality this can be the fixed point itself, however more work
is required for safety.

In addition to producing the new proofs for simple pending analysis, the fixed point properties of configura-
tions and the non-deterministic algorithm are reconsidered. Corrections are given for slips in the proofs in
YCS107 and an updated algorithm is given which reflects the techniques used in the proofs in this paper,
relaxing monotonicity conditions.

-2-

Note: the user is assumed to have a copy of YCS107 as several definitions of operators etc. are not repeated
here.

1. Optimality of binary and general pending analysis

Recall that standard binary pending analysis is the function X{}, where

XA|a = ⊥ a e A
= (G XA + {a})|a otherwise

Where G is the defining functional and A is the set of application values that are "pending".

We want to prove that X{} � fix G, to do this we prove in general:

Theorem - optimality of binary pending analysis

XA � fix G

Proof

Induction on size A.
Base case A complete

XA = ⊥ � fix G
QED base case

Inductive case.
Sub-cases

case a e A
XA|a = ⊥ � fix G|a

QED a e A
case a ‰ A

XA|a = G XA + {a}|a
but

XA + {a} � fix G - induction
⇒ G XA + {a} � G fix G = fix G - pseudo-monotonicity

QED a ‰ A
QED inductive cases

QED Theorem

Notice the pseudo-monotonicity step, that would not allow us for instance to prove XA + {a} � XA.

The proof for general finite height domains is similar, except in that the definition involves a recursion:

XL
C |a = C (a) a e dom C

XL
C |a = fix h otherwise

where
h(d) = (H XL

C + (a→d))|a

Here H is used for the defining functional when the domain is non-binary. C is a configuration, that is a
partial function that represents the set of assumptions made about the target function during the course of
the algorithm.

Note that h is in general not monotonic, so the standard meaning of fixed point does not apply. This point
will be dealt with later, howev er in the mean time dangerous steps are marked !FIX!.

Again we want to prove that XL
C � fix H . We need to include the obvious proviso that C << fix H

-3-

Theorem - optimality of non-binary pending analysis

C << fix H ⇒ XL
C � fix H

Proof

Induction on size C.
Base case C complete

XL
C = C � fix H

QED base case

Inductive case.
Sub-cases

case a e dom C
XL

C |a = C (a) � fix H |a
QED a e A

case a ‰ dom C
XL

C |a = fix h
where

h(d) = (H XL
C + (a→d))|a

but
d � fix H |a

⇒ C + (a→d) << fix H
⇒ XL

C + (a→d) � fix H - induction
⇒ H XL

C + (a→d) � H fix H - pseudo-monotonicity
⇒ h(d) � fix H |a

therefore fix h � fix H |a - !FIX!
QED a ‰ A

QED inductive cases

QED Theorem

These two proofs are straight-forward and need none of the results from YCS107 except for the pseudo-
monotonicity of functions defined by terms.

2. Safety of binary pending analysis

We want to prove that X{} � fix G, to do this we prove that in general:

A ⊆ A' ⇒ XA � ZA '

ZA is the improved algorithm defined by:

ZA|a = ⊥ a e A
= (G ZA ⊕ {a})|a otherwise

where A ⊕ {a} is A extended by a and then downwards closed. That is:

A ⊕ {a} = A ∪ { a' | a' � a }

In YCS107 we proved that ZA = fix GA, where GA is defined as follows:

GA I |a = ⊥ a e A
= G I |a otherwise

So Z{} = fix G{} = fix G. Thus the general result will be sufficient for safety of pending analysis.

-4-

Theorem - safety of binary pending analysis

A ⊆ A ' ⇒ XA � ZA '

Proof

Induction on size A.
Base case A complete ⇒ A ' complete

XA = ⊥ = ZA '
QED base case

Inductive case.
Sub-cases

case a e A '
XA|a � ⊥ = ZA '|a

QED a e A '
case a ‰ A ' ⇒ a ‰ A

XA|a = G XA + {a}|a
ZA '|a = G ZA ' ⊕ {a}|a

but
A + {a} ⊆ A ' ⊕ {a}
⇒ XA + {a} � ZA ' ⊕ {a} - induction
⇒ G XA + {a} � G ZA ' ⊕ {a} - pseudo-monotonicity

QED a ‰ A '
QED inductive cases

QED Theorem

3. Safety of non-binary pending analysis

We might hope to prove a similar result for non-binary functions:

C � C ' ⇒ XL
C � XC '

Unfortunately this fails. If we follow the same proof procedure as for optimality we need to prove
fix h � fix h' where:

h(d) = (H XL
C + (a→d))|a

h'(d) = (HC XC ' ⊕ (a→d))|a

This is in general not true because HC can "hoist" up the value at a if dom C contains elements comparable
with a.

We can proceed however by creating a new functional HF
C which is monotonic and has an incremental fixed

point theorem, but which doesn’t hoist up the target value. We will find we can prove that XL
C � fix HF

C '

The new functional is defined in a similar manner to HL
C and HC except with a different bounding func-

tional FC:

HF
C = FC H

FC I = C� ∧ I

That is FC simply bounds above by C whilest retaining monotonicity. Notice too that HF
{} = H , so that a

safety comparison with HF
C will prove safety of XL

{}. Note too that like HC (and unlike HL
C) HF

C requires
that the configuration C be monotonic.

The incremental fixed point theorem for HL
C merely added to the configuration (C + (a→d)), whereas HC

needed a special augmentation operator (C ⊕ (a→d)). The similar theorem for HF
C needs an adding oper-

ator (C ∧ (a→d)) that bounds above but which preserves monotonicity:

-5-

dom (C ∧ (a→d)) = dom C + { a }

C ∧ (a→d)|a = d ∧
a'�a
∧ C (a')

C ∧ (a→d)|a' = d ∧ C (a') a' � a
= C (a') otherwise

Essentially C ∧ (a→d) is the biggest monotonic configuration less than both C and { a → d }.

The incremental fixed point theorem is familiar enough by now. Its proof is nearly identical in form to that
for HC except that all the lemmas needed about BC are trivialy true for FC. We will label the steps as for the
proof for HC to emphasise similarity.

Theorem - incremental fixed point theorem for HF
C

let g(d) = (HF
C (fix HF

C ∧ (a→d)))a

and d fix = fix g
and C fix = C ∧ (a → d fix)
then

(i) (fix HF
C)a = d fix

(ii) fix HF
C = fix HF

C fix

Proof

In the proof for HC we needed to prove dlhs � d fix in order to prove that
fix HC fix

� fix HC, howev er this is obvious for HF
C as HF

C fix
is simply bounded above by a

smaller configuration and HF
C fix

� HF
C , so we can jump straight away to:

(3) fix HF
C fix

� fix HF
C

We now need to prove the opposite inequality:
(4) let I = fix HF

C fix

prove that HF
C I = I

(4.1) (HF
C I)a = d fix

– immediate from def’n of g and g(d fix) = d fix

(4.2) ⇒ HF
C fix

I = HF
C I

– as (4.1) ⇒ HF
C I � (C ∧ (a→d '))�

(4.3) That is I = (HF
C I)

QED (4)
(5) thus fix HF

C fix
= I � fix HF

C – minimality of fix HF
C

QED (ii)
(6) fix HF

C = HF
C (fix HF

C) = HF
C (fix HF

C fix
)

⇒ (fix HF
C)a = g(d fix) = d fix

QED (i)

QED theorem

The final step is to prove the correctness of XL
C by comparison with fix HF

C

Theorem - correctness of non-binary pending analysis

C � C ' ⇒ XL
C � fix HF

C '

Proof

Induction on size C.
Base case C complete ⇒ C ' complete

XL
C = C � C ' � fix HF

C '
QED base case

-6-

Inductive case.
Sub-cases

case a e dom C
XL

C |a = C (a) � C '(a) � fix HF
C '|a

QED a e A
case a ‰ dom C

XL
C |a = fix h

where
h(d) = (H XL

C + (a→d))|a
but
∀ d XL

C + (a→d) � fix HF
C ' ∧ (a→d) - induction

⇒ H XL
C + (a→d) � H fix HF

C ' ∧ (a→d) - pseudo-monotonicity
� HF

C ' fix HF
C ' ∧ (a→d)

so
h � g - where g is the function in the fixed point theorem
⇒ fix h � fix g = (fix HF

C ')a - !FIX!
QED a ‰ A

QED inductive cases

QED Theorem

Strangely enough there appears to be no pending like algorithm that is equal to fix HF
C as there is for

fix HC. This is because, even when we know a value is in the configuration C, we only know that fix HF
C is

lower than this (rather than equal as with HL
C and HC). Even if such an algorithm did exist, it would not be

very interesting, as it would be "worse" than simple pending analysis in that it would converge slower and
be more complex. XC is of course a useful algorithm as although it is more complex, it has better conver-
gence.

4. Errata - Fixed point properties of monotonic configurations

Note the proof given in YCS107 was intended for monotonic functionals and monotonic configurations. In
fact as stated, it starts iterating at a non-monotonic configuration so works instead for fully-monotonic func-
tionals over possibly non-monotonic configurations! The iteration in the proof should start at C⊥, and is
then correct.

5. Fixed point properties of non-monotonic configurations

We can produce a fixed point theorem for non-monotonic configurations, namely:

Theorem

C >> HC ⇒ C >> fix H

Proof

-7-

let f0 = ⊥
fi+1 = H fi

be the standard sequence to give fix H .
We want to prove inductively that C >> fi

base case
f0 = ⊥ and C >> ⊥

QED base case
inductive case

by inductive hypothesis C >> fi

⇒ HC >> H fi - pseudo-monotonicity
⇒ C >> fi+1

QED inductive case

So if we can construct (by some means!) a configuration with C >> HC it is a safe (albeit non-mono-
tonic) approxiomation to fix H . If in addition one can show by some alternative argument that
C << fix H , then the configuration will be exactly fix H |dom C.

6. Errata - Non-deterministic algorithm using monotonic configurations

The definition of C ↑ C ' should read:

dom (C ↑ C ') = dom C ∪ dom C '

(C ↑ C ')|a = C�|a ∨ C '�|a

That is the least monotonic configuration greater than both C and C '. Simple least upper bound is used
below for the non-monotonic version.

7. Non-deterministic algorithm allowing non-monotonic configurations

With the above version of the fixed point theorem for non-monotonic configurations we can mirror the
algorithm used in YCS107 to allow non-monotonic intermediate configurations. As with the case for using
standard pending analysis as opposed to the version using monotonicity it depends on the usage and imple-
mentation which is better, but at least this allows the use of a simpler algorithm if desired.

The algorithm is nearly the same as the monotonic version, except that it uses simple configuration upper-
bound (C ∨ C ') rather than the upward sum (C ↑ C ') defined above. C ∨ C ' is in fact the operator
defined wrongly in YCS107 just to confuse things.

dom (C ∨ C ') = dom C ∪ dom C '

(C ∨ C ')|a = C|a ∨ C '|a
In addition this algorithm makes no monotonicity provision at step 3.

Define a sequence

-8-

let Ci be a sequence of configurations defined thus:
C0 any configuration such that C0 << fix H
for each i either
(1) choose a ‰ dom C, d � (fix H)|a

Ci+1 = Ci ∨ (a → d)
⇒ Ci+1 << fix H

(2) choose C ⊆ Ci

then choose C ' ⊆ HC
Ci+1 = Ci ∨ C '
⇒ Ci+1 << fix H -pseudo-monotonicity

(3) choose any (possibly non-monotonic) Ci+1 << Ci

⇒ Ci+1 << fix H

Obtain result

for any i choose C ⊆ Ci such that C >> HC
⇒ C ⊆ fix H

Again if step 3 is never used (and why should it be?) the algorithm is bound to terminate as the sequence Ci

is increasing. With suitable instantiation this furnishes an alternative proof of the various algorithms above.
In addition it allows for optimised versions of the algorithm.

8. Meaning of fixed point for non-monotonic functions

For non-monotononic functions, we cannot use the standard fixed point algorithm without comment:

d0 = ⊥
di+1 = f (di)

fix f = ∨ di

We can construct the set di as before, but it is not in general increasing, and the least upper bound need not
be fixed. This is particularly nasty when viewed as an effective algorithm in a finite domain as the
sequence di need not stabalise, leading to possible non-termination. There are several definitions we can
use to extend the operator fix to non-monotonic functions however:

(i) the definition used above

(ii) use di as above but use
n
∨

i>n
∧ di

(iii) use di as above but use
n
∧

i>n
∨ di

(iv) define a new increasing sequence

d0 = ⊥
di+1 = f (di) ∨ di

fix f = ∨ di

All these definitions are equivalent to standard fix on monotonic functions. (i), (ii) and (iii) all share the
termination problem, so an alternative proof of termination is necessary. (iv) is an increasing sequence, so
is bound to terminate. Note that using (iv) we have f (fix f) � fix f . The other definitions have no
such nice properties. It is not necessarily true that (iv) ascends faster than the rest, although it looks as
though it should. However in non-perverse examples it probably will "on average"!

Tw o properties are used of fix in the above theorems, both are true for all definitions:

(1) (d � d ' ⇒ f (d) � d ') ⇒ fix f � d '
(2) fix is pseudo monotonic, that is:

-9-

f � g and one of f or g is monotonic
⇒ fix f � fix g

The former is a simple induction on di . The pseudo-monotonicity is only slightly more subtle,

Proof - pseudo-monotonicity of fix (all defn’s)

let di be the sequence for f and ci be the sequence for g
(using whichever definition we are interested in)

we want to show by induction that di � ci

base case
d0 = ⊥ = c0

QED base case
inductive case

by inductive hypothesis di � ci

if f is monotonic then
f (di) � f (ci) � g(ci)

otherwise g is monotonic and
f (di) � g(di) � g(ci)

either way f (di) � g(ci) whence by whichever
definition we use we get di+1 � ci+1

QED inductive case
in each case the construction of fix f from di uses standard
operations, so fix f � fix g
QED theorem

9. Conclusions

If I had this proof before writing YCS107, it would have been shorter and simpler. Howev er, it would have
been a pity not to have the incremental fixed point theorem for BC, and in general to have missed the
breadth and depth of analysis. Also I would have been unlikely to have produced the non-deterministic
algorithm which promises far more power and flexibility than the other algorithms considered.

It is very nice to finally have no loose ends dangling.

-10-

Appendix - Notation index

The following is an index to most of the notation used in this report and YCS107.

Symbol Report Section Description

Appl YCS107 §2.1 domain of possible arguments
D "" "" domain of possible results
Interp = Appl→D "" "" type of target function
G "" "" defining functional for binary target function
A "" "" set of values from Appl used to record pending arguments

for binary pending analysis
GA "" "" functional used for binary pending analysis
f |S "" "" the function f restricted to the set S, f |a = f (a)
pseudo-monotonic "" §2.2 functionals obeying monotonicity property when only one

function argument is monotonic
XA "" §2.3 function generated by pending analysis
fully-monotonic "" §2.4 functionals monotonic regardless of the monotonicity of

their function argument
ZA "" §2.5 function generated by modified algorithm which preserves

monotonicity for all binary functionals
A ⊕ {a} "" "" A extended by a and then downwards closed
C "" §4 a configuration, that is a partial function to record assump-

tions made about the target function during pending analy-
sis of non-binary functions

C + (a→d) "" "" simple configuration extension
C � C ' and �, ⊆, <<, >> "" "" various partial orderings over configurations
H "" "" defining functional used as a function over configurations
XL

C "" §5 simple pending analysis function for non-self-applicatory
functions

HL
C "" §5 version of the defining functional used in the simple pend-

ing analysis algorithm
LC "" §5 limiting functional used to make the resulting function

agree with C over its domain
C�, C⊥ "" §6.2 bounding configurations about C
C ⊕ (a→d) "" §6.2 augmentation of C similar to simple extension Cadd , but

preserving monotonicity.
BC "" §6.3 bounding functional, similar in purpose to LC, but ensuring

that its result is a monotonic function
HC "" §6.4 the constrained iterator, a version of the defining functional

which ensures that the resulting function is monotonic
XC "" §6.6 the function generated by the algorithm using HC

Bnd "" §6.6 the one point equivalent of the functional BC

C ↑ (a→d) "" §10 symetric upward sum of configurations
C ↑ (a→d) here §7 corrected version of above
 YCS107 Ax 4 "nearly" partial order, over which all normal functionals are

monotonic
HF

C , FC here §4 constrained iterator and associated iterator used to prove
correctness of simple pending analysis for non-binary func-
tions

C ∧ (a→d) here §4 monotonic glb operator for adding to configurations
C ∨ C ' here §8 simple symetric, not necessarily monotonic least upper

bound operator for configurations
fix here §9 various generalisations of the fixed point operator for use

with non-monotonic functions

