
Finding Out
event discovery using statusÐevent analysis

Alan Dix

School of Computing, Staffordshire University, UK

http://www.soc.staffs.ac.uk/~cmtajd/topics/status/

This paper uses statusÐevent analysis to systematically decompose the process
by which the knowledge and effects of events are propagated through a
system. The analysis focuses on events Ð things that happen; status Ð things
that are always there; and agents Ð affected by events and interacting with each
other and status phenomena. Single interactions between these are
characterised by the source of event knowledge, the initiator of interaction and
the trigger for interaction. This generates a structured set of alternatives by
which events are transmitted through chains of interaction. The application of
this analysis to notification server design is briefly described.

keywords: statusÐevent analysis, delays, causality, CSCW, notification

1. Introduction
StatusÐevent analysis is the name of a collection of methods developed and used
over the last 10 years to understand and analyse various issues in both single-user
interfaces and CSCW. These methods are unusual in that they treat events (things
that happen) and status (things that are) on an equal footing. The power of this
descriptive framework has been that it is possible to describe human, compute and
physical phenomena in the same framework and furthermore see common issues
and phenomena arising.

StatusÐevent analysis (SÐEa) has proved useful in a number of areas from the design
of fine-grained interaction in auditory interfaces [5-7, 15] to the construction of
software architectures for application integration [43, 44]. In particular, it has
recently been used in order to elucidate the design space for notification servers
within CSCW systems [39] and is currently being used as one of the major analysis
techniques in a project investigating the construction of mobile, multi-user,
multimedia applications1 where issues of context-awareness demand the explicit
representation of status phenomena [41].

Several uses of SÐEa have focused on time delays and in particular the importance of
mediation, both where status phenomena may be used as a means of
communicating events (for example highlighting an icon when email arrives [18, 19])
and also where events are used to preserve a desired relationship between status
phenomena (as in constraint maintenance systems [28, 33]). In previous work a
rough typology of statusÐstatus mediation (e.g. how when an icon is dragged

1 ÒInterfaces and infrastructure for mobile multimedia applicationsÓ, funded by the EPSRC MNA
programme . http://www.hiraeth.com/alan/projects/I2M2A98

following the mouse position) was used to expose typical timing problems [13], but
in early work this consisted of a rather unstructured list of options and it was
unclear whether the list was complete. Although the focus of this previous work
was on statusÐstatus mappings, the key issue was event discovery Ð how an agent
can find out when an event has occurred.

In this paper the space of mediation options is analysed in a structured fashion
giving rise to a multi-dimensional taxonomy of mechanisms in which events can be
discovered by agents within a statusÐevent framework. The results of this work has
already been invaluable in the analysis of notification mechanisms, but this
application is only described briefly as it is dealt with in detail elsewhere [39].

The paper will begin with a review of statusÐevent analysis leading into the
structured analysis which focuses on three main aspects of event discovery: source
of event information, the initiative in finding out and the triggering events which
prompt discovery. By mapping out chains of simple interactions we see behaviours
of event discovery such as demand and data driven discovery. We will then look at
the way this work has helped in the analysis of notification server design. The paper
concludes with an examination of related work within user-interface
implementation and specification literature, and more widely.

2. What is statusÐevent analysis?
Events happen at a specific moment whereas status refers to phenomena which may
be measured or sampled at any time such as the current air temperature, the
appearance of a screen or the position of a mouse. Many formal and informal
analysis methods attempt to describe all phenomena in terms of one or the other. In
particular, the discrete nature of computer systems has tended to mean that all
phenomena are cast as events. Elsewhere the danger of this approach has been
argued as it means that specifications are both unnatural (they don't easily describe
the required phenomena) and over-specific (they don't accurately describe the
phenomena). Status-Event analysis consists of methods which take this distinction
seriously.

One way to see this distinction is to consider traces of activity for status compared
with those for events. For an event phenomena, the trace is a sequence of times the
event happens together with any value associated with the instance of the event:

etrace: Event ¶ seq (T
≈ Eval)

where ∀ i, j ∈ dom (etrace(e)) •
(i < j ∧ etrace(e)i = <ti,vi> ∧ etrace(e)j = <tj,vj>) ⇒ ti < tj

In contrast a status phenomena always has a value and so a status trace gives a value
for each moment in time:

strace: Status ≈ T › Sval

StatusÐevent analysis was first used to model mouse dragging in single user
interfaces and some aspects of shared interfaces [18], but its wider application soon
became evident. One early application was the analysis of delays in email delivery
using timeline techniques [16, 19, 20]. Figure 1 shows the individual timelines for

agenttime
mailbox file

mail arrives
message added

to mailbox

status
mailtool
agent

event
mailtool notices
message in box

screen
status

event
event

change icon

user

event

user notices
changed icon

,

.

Figure 1. StatusÐevent timelines for email delivery

several agents and status phenomena within the system. This example highlights
several critical features that were subsequently found in many systems.

¥ mediation Ð The file system (a status) acts as a mediator between the agent
that actually receives email (e.g. sendmail) and the user's email agent Ð a
computerÐcomputer interaction. Similarly the email agent highlights an icon
(status) and uses this to signal the arrival of email to the user Ð a computerÐ
human interaction. In each case one agent informs another of an event by
changing a mediating status.

¥ statusÐchange events Ð Although the original event is that email arrives, the
event that is significant for the mailtool and user is the relevant status-change
event Ð the change in the file systems, or the change in the icon.

¥ polling Ð In each case the relevant agent finds out that the status has changed
by intermittent checking of the mediating status; that is polling.

¥ actual and perceived events Ð There is an actual change in status when the new
message is added to the mailbox, but the mailtool does not perceive this event
until it next polls the file system. Similarly, there is an actual change in the
screen status when the icon is changed, but the user may not notice this
straight away.

Notice how similar techniques and issues arise during humanÐcomputer and
computerÐcomputer interaction.

SÐEa has since been used by the author and others in a range of situations using both
formal and informal analysis techniques.

As a semi-formal analysis tool SÐEa has been used to aid the design of auditory
interfaces. When considering the addition of sound to on-screen buttons, SÐEa both
guided the appropriate choice of auditory feedback and also helped design
experiments which induced normally infrequent expert slips within a short
experimental setting [6, 15]. Because of the importance of mode (a special kind of

status) in user interfaces, Brewster considered this alongside events and status and
applied the resulting eventÐstatusÐmode (ESM) technique to various auditory
interfaces including the auditoryÐenhanced scrollbar [5, 7].

Again as a semi-formal framework, SÐEa has been one of the theoretical bases of an
analysis of long-term interaction Ð processes which take place over hours, days or
months. In particular, it helped focus on the role of environmental cues (pieces of
paper on desks, Post-It Notes) as triggers for action [17, 21].

SÐEa has also been used by Wood as the foundation for Cameo an agent-based
software architecture implemented in Java, which has been used to construct
CyberDesk an interface for context-aware application integration [43, 44]. The actual
programmes written under Cameo operate in an event-based fashion, but Cameo
embodies the spirit of SÐEa by giving a structured way of mapping status into
events. Cameo agents can advertise 'nodes' and allow other agents to 'manipulate',
'observe' or 'examine' the node (or any combination). Manipulation allows the value
can be altered externally, observation allows the setting of callbacks (handled by
Cameo) and examination allows polling behaviour.

The author's own work with Abowd has looked more closely at notations and
formal implications of SÐEa including the specification and analysis of shared
scrollbars in collaborative systems [1, 14]. Most important for this paper was the
analysis of delays due to statusÐstatus mediation [13]. We will review the situation
at that point and see how a more detailed analysis is needed.

Consider, a simple functional relationship between two status values 'x' and 'y':

y = f(x)

First note that in a digital system it is impossible to permanently maintain such a
statusÐstatus mapping unless either they are linked physically, or the 'y' is merely a
virtual value calculated from 'x' when needed. With these exceptions changes to y
will always lag a little behind those to x as the system attempts to 'catch up'.

If this is the case, how does 'y' actually get changed? In [13]. we listed four
alternatives:

(i) the agent which changed ÔxÕ also changes 'y'.

(ii) an agent responsible for ÔxÕ (active value) changes 'y'.

(iii) an agent responsible for ÔyÕ polls the value of 'x'.

(iv) an agent responsible for the mapping (e.g. constraint system) polls 'x'
and the updates 'y'.

Although this seems like a reasonably complete list there are clearly extra cases
involving other intermediaries. Furthermore, how do we know if we added cases
whether those made it complete or whether more cases again need to be considered?

The next section answers this by considering the process of event discovery
systematically.

3. The conceptual world of statusÐevent analysis
In this section we will first examine in more detail the things that make up the world
when viewed through the SÐEa framework.

3.1 Fundamental entities

SÐEa obviously emphasises status and events Ð these are the observable phenomena
around us. However, in the analysis so far agents have also been mentioned several
times. Agents, whether computational or human, are the subject of or may generate
events and may observe and change status phenomena.

Clearly, some status phenomena are external to any identifiable agent, for example,
the pattern of light shining through the clouds. Other status phenomena are closely
connected, being the external expression of some part of an agent's state, for
example, the expression on someone's face.

Status and agents are similar in they both persist through time and furthermore
agents will often posses an internal state which is itself a form of status. Because of
this, the formal specification notations used previously for SÐEa have regarded
status as an attribute of agents [1, 14]. The representation of status in Cameo [43]
and in the author's own early work on SÐEa-inspired software architectures [12]
have both had a similar flavour Ð embodying status within agents which manage the
status and inform interested third party agents of status change.

In an implementation setting this identification makes sense, but for this analysis it
is better to keep the two separate and so status and agents are regarded as distinct.
Thus we will be looking at a three way relationship between status, events and
agents.

3.2 Events

Events in a SÐEa world can either arise internally from agents (A→) or status (S→),
or externally (X→). In addition, in both the electronic or physical world, messages or
signals are sent which take some time to arrive due to the properties of the channel
or medium. The receipt of such a message is clearly caused by the sending of the
message, but is a distinct event (M→).

External events (X→) are least interesting, they simply happen as input. Similarly
message receipt (M→) is only of one kind. Because we are considering agents and
status separately, the status phenomena have no independent initiative and so the
only kind of event from these are status-change events (S→).

This leaves us with the case of events emanating from agents (A→) Ð that is, when
they do something. An agent may respond due to some previous trigger event.
This may be effectively instantaneous, or more normally after a delay due to
computation, thinking or a timed interval. Agents also have initiative and hence
may generate events without explicit external triggers. These may either be
apparently causeless sporadic events (normally human agents) or may be due to
periodic or timed behaviour (normally computational agents).

In summary, we have the following kinds of event:

¥ external (X→)
¥ status-change (S→)

¥ message receipt (M→)
¥ dependent (→A→)

Ð instantaneous, after computation/thinking or after timed delay
¥ independent (A→)

Ð sporadic, periodic or at set time

4. Simple Interactions
An event E has happened somewhere. How does an agent A get to know that it has
happened? In other words, how does the actual event E become a perceived event
for A? A similar question arises for a status S. How does the event E get to affect
the value of S?

In practice there may be a whole chain of events and interactions between E and A
or S. In section 5 we will look at these chains,. However, in this section, we will
begin by looking at one step in that chain , a simple single-stage interaction.

Imagine an entity (agent or status) has already been influenced by the event E. We
want to see how another entity can interact with it to in turn be influenced. We will
write the participating events, status or agents left-to-right denoting the direction of
causality between them as the event E is propagated.

4.1 External events

The simplest case is when the event is an external an agent or status is directly
affected by an external event. We will write these:

¥ X→A external event influences an agent

¥ X→S external event modifies status

4.2 Source and target

Looking at single interactions between agents and status we get four main
possibilities depending on whether the source and target of the interaction are
agents or a status:

¥ A→A communication between agents

¥ A→S agent modifies status

¥ S→A agent notices status change

¥ S→S physical link between status

4.3 Delays and synchronicity

Usually the interactions leading to a status change (A→S and S→S) are synchronous
Ð when the agent changes the status value, it instantly changes, when two status are
physically linked, they move together. However, if either of these are introduced in
a high-level specification they may latter be implemented by several stages hence
delays may occur.

In the cases where agents are affected by events there are frequently delays. In the
case of communications between agents some sort of message will be sent which

may both take time and be unreliable (A→M→A). We will not represent these
message explicitly further in this paper, but simply note that any A→A interaction
may be subject to such delays. In the case of status change, there may also be a gap
between the actual change and the perceived event for the agent.

Note that where S→S links are really physical processes there may not be a finite
number of distinct change events, but instead a continuous linkage between the two,
possibly involving complex dynamic behaviour.

4.4 Initiative

When the target of an interaction is a status there is no question of where the
initiative lies. However, when the target is an agent we need to know whether the
source initiated the interaction or whether the target agent chose to do so.

Consider first A→A interactions. In the next room my daughter is watching the
EnglandÐArgentina World-Cup Match. A goal is scored. Two thing may happen.
My daughter might come through and say "England has scored". Alternatively, at a
suitable break in the typing I might go through and say "has there been a goal?". In
both cases the knowledge of the goal scoring event has gone from my daughter to
me, but in the latter case the initiative came from me, the target. We will distinguish
the two case by reversing the arrow, so that causality always flows from left to right,
but the arrow direction denotes initiative:

¥ A→A source agent tells target agent

¥ A←A target agent asks source agent

With S→A interactions, one could argue that the initiative must always come from
the agent who must watch the status:

However, in physical systems status phenomena can force themselves on our
attention. Think of the jungle film where the heroine wakes up tense because the
sounds of the jungle have ceased. In computational system s we get a similar effect
when there is some sort of 'gatekeeper', a primitive agent which can inform other
agents of status changes (but have no independent initiative). Examples of this
include active values [10] and some databases with triggers.

¥ S→A gatekeeper of status tells target agent

¥ S←A target agent watches source status

4.5 Trigger

Finally, we need to know what event triggered the interaction.

In the case when the status is the source and initiative (S→S and S→A) then this can
only be the event which modified the status. However, the cases where source or
target agent has the initiative (A→S, A→A, A←A and S←A) are more complex.
Recall there were two main types of agent initiated events: dependent (triggered by
previous event to agent) or independent (sporadic, periodic or at set time).

It is often, the case that source initiated interactions will be dependent, triggered by
the event E. This is a form of data driven computation. In contrast, target initiated
interactions often involve sporadic or periodic polling. However, all four cases can
arise. Some mail systems gather several mail messages together in a spool file and

then periodically send all the accumulated mail, a form of periodic update. This is a
periodic source initiated interaction. Also, the target agent may poll due to some
other event. In particular, this event may be the request for information from a
further agent Ð demand driven computation.

dependent
(previous event)

independent
(sporadic, periodic etc.)

source data driven periodic update

target demand driven polling

5. Causality chains
As already noted, we can see that there may be a chain of interactions that lead to an
agent or status being influenced by an event E. We can use the notation from the
previous section for these. Consider the chain:

XàA1àS1àS2ßA2

An external event X initiates this. It affects the agent A1 which reacts by modifying
the status S1. Some physical process (or constraint management) links S1 and S2, so
S2 is changed as well. Then due to periodic or sporadic polling, agent A2 looks at S2
and so becomes aware that X has happened.

At each link in this chain we can examine the triggering events, consider delays etc.,
following the analysis of the previous section. In particular, this can give us the sort
of delay analysis used in the statusÐevent timeline diagrams.

Looking at such chains we can see structures such as demand-driven discovery:

AßAßAßA

or status mediation between communicating agents:

AàSàA

So, where does the chain start?

If the event of interest is E, then this may be the start point as in the case of the
external event above. However, the chain may also start at some common cause.
For example, suppose an agent AX is interested in status change for SY It may find
out by observing for direct effects of SY:

SYàAàAàSàSßAX

However, there may instead be a second status SZ which changed and separate
chains of events gave rise to the status change of SY and the event perceived by AX:

SZ
äÊAàAàSàSßAX
ÊæÊAàAàSY

Note that this is predictive discovery. If the propagation down the lower chain is
slower than the upper, or unreliable then AX may think that the status changed has
occurred before it actually happens, or even when it never happens at all!

Although this seems a rather extreme case it is quite common when the lower chain
is trivial. For example, consider the chains:

AZ
äÊAàAàSàSßAX
ÊæÊSY

In this case, the agent AZ, which caused the change to SY also sets in motion a chain
of events which results in AX perceiving the status change. This is common in
computational systems. For example, a program may change an internal data
structure and then update the screen. When you see the screen change you will
regard it as an indication of the changed data:

Aprogram
äÊSscreenàAuser
ÊæÊSdata

6. Application
This analysis of cases is quite tortuous at times. However, it pays off by giving a
much greater sense of certainty in the completeness of the resulting analysis. This
has already proved powerful in the analysis of the design space for notification
servers [39].

We consider several client applications (agents) running on each participant's
machine. These clients update shared data (perhaps in a data base or shared file
system). In some such systems the clients communicate directly with one another in
a peerÐpeer architecture. However, peerÐpeer architectures often involve complex
and hence error-prone coding, especially when one tries to account for participants
joining and leaving in the midst of a collaborative interaction. A centralised
notification server can help this by acting as a mediator between the clients.

For a particular update event one client will be the active client (AC) that performed
the update and the rest will be the passive client (PC) who need to know that the
update has happened (so they can update their display of the shared data). This
leads to the architecture in figure 2.

Passive
Client

Notification
Server

A B

Active
Client

Data data flow

control

Figure 2. Notification server as mediator

The two sides of this, A and B, can be considered separately and each are of the form
found in figure 3.

Agent B

Status

(i)tell

(ii) ask

(iv) watch

Agent A

(iii) gatekeeper

Figure 3. Notification server as mediator

This uses the 4 source/initiative alternatives for agent targets from section 4.4:

(i) A→A source agent tells target agent

(ii) A←A target agent asks source agent

(iii) S→A gatekeeper of status tells target agent

(iv) S←A target agent watches source status

When applied to the active client to notification server side (ACÐNS), all four
possibilities may occur. For example, the active client may tell the notification server
when it updates the shared dataÐ (i) tell. Alternatively, the notification server may
poll the shared data Ð (iv) watch.

On the notification server to passive client side, we need not consider the event
interactions between passive client and shared data as this would render the
notification server redundant. (Although PC may go to the shared data for the value
of the change.) Thus only options (i) and (ii) need be considered. Existing and
potential notification server designs can then be placed the resulting 2x4 matrix.

Each position in this matrix has a corresponding chain description:

notification server to passive client

NS Ð PC

(i) tells (ii) asks

(i) tells AC
äÊNSàPC
æÊSD AC

äÊNSßPC
æÊSD

active client to
notification server (ii) asks AC

åÊNSàPC
æÊSD AC

åÊNSßPC
æÊSD

 AC Ð NS (iii) gatekeeper ACàSDàNSàPC ACàSDàNSßPC

(iv) watches ACàSDßNSàPC ACàSDßNSßPC

This analysis has enabled us to identify gaps where there are no current notification
servers. For example, we could find no example which fits in slot (i)Ð(i) but this is
clearly the 'purest' notification server. We are using this knowledge to guide

practical work in notification server design and the construction of an experimental
notification server called GtK (Getting-to-Know).

For a more detailed description of this analysis of notification server design see [39].

7. Related work

Notification and awareness

Shared information is of central importance in many collaborative systems, both
explicit information such as shared documents and also implicit information on the
presence and activities of other participants required to give a sense of mutual
awareness [23, 30]. Because of this number of systems have been designed over
recent years which act as 'notification' or 'awareness' servers including the Web
Awareness Protocol [35], Lotus NTSP [38], Aether [42] and our own notification
server GtK (Getting-to-Know) [39]. The principal purpose of these is not to store or
manage data (although some do this as well), but to inform other programs and
ultimately users when changes have occurred.

In addition, there has been considerable interest in formal models of awareness
within collaborative applications [2-4, 40]. It is interesting to note that these formal
awareness models are not phrased in event terms such as "when person A enters the
room, person B is informed". Instead they are much more status-oriented: "when the
nimbus (region of influence) of person A intersects that of person B they should be
aware of one another".

Toolkits and programming

StatusÐstatus mappings are common in single user interfaces (e.g. dragging) and
multi-user interfaces (e.g. keeping several users' views consistent). In addition, user
interface events, such as mouse clicks, need to be passed on to the relevant
component. Not surprisingly toolkits and user interface development systems often
have some form of event notification mechanism.

The Smalltalk Model-View Controller (MVC) model used a mechanism whereby
objects could register themselves as dependants of another object which would then
inform its dependants about changes to its state [26, 31]. Similar techniques can be
found in the X-Motif callbacks [34] and in the Java JDKÊ1.1 sourceÐlistener event
model [25].

A similar mechanism is the use of active values, variables which invoke callbacks
when modified. These were first used in the InterLisp environment within a single
machine, but have also been adapted in Suite [10, 11] as the main mechanism for a
distributed multi-user interface development toolkit.

A more sophisticated option is when the toolkit embodies a constraint maintenance
system as in the case of Garnet [33] for single user interfaces and Rendezvous [28,
29] for distributed, multi-user interfaces.

In the callback-style toolkits the programmer must explicitly make the shift between
thinking about relationships between status phenomena and code this in terms of
event callbacks. In contrast, these constraint-based toolkits allow the programmer to

think in terms of statusÐstatus relationships. They thus fall very close to the spirit of
statusÐevent analysis.

Formal notations

There has been a tendency for formal notations in computing in general and in HCI
in particular to be event-oriented (or possibly event-fixated). This is natural given
the discrete nature of digital machines. However, one of the purposes of these
notations is to specify a user-oriented view of the system, which should not be
limited by the discrete nature of current silicon technology. In previous papers,
formal interface notations have been reviewed in relation to their adequacy for
statusÐevent description [1, 14], so only the most pertinent are described here.

Early formal interface notations based on process algebras or formal grammars were
completely event-oriented. However, influenced by the PIE model [22], most
current notations incorporate some form of mapping to capture the visual aspects of
interface objects. The York interactor model [24] has a render mapping which makes
parts of the interactor's internal state visible Ð that is they have status output, but not
input. The CNUCE interactors [36, 37] also have such a rendering, but as they are
specified in Lotos (a CCS derivative), they cannot express status outputs directly,
but instead rely on specific 'get(x)' events, a form of polling.

Looking beyond user interface formalisms, we find that requirements specification
has similar issues, for example Moffet et al. used an up-arrow notation (↑ x) for
'predicate becomes true' events as part of their requirements capture model [32].
However, it is when formal methods meets physical systems that the need for status
representation becomes unavoidable. In these circumstances discrete digital
controllers need to interact with physical phenomena operating under the normal
continuous processes of nature. This has lead to the study of so called 'hybrid
systems' [27] with notations, for example the extended duration calculus [8, 9],
which include differential equations for modelling physical phenomena and
standard computing formalisms for the digital parts. The need to represent external
phenomena as status has not lead to a recognition of the importance of internal
status on an equal footing with event.

8. Conclusions and discussion
We have seen how statusÐevent analysis can be used to systematically breakdown
the steps in event discovery. The systematicity is important so that we do not omit
cases during the analysis of specific problems. Of course, in specific domains, we
may be able to ignore some of the generic alternatives as we saw in the analysis of
the notification server design space, but it is important that we deliberately omit
alternatives during design rather than accidentally miss them.

Although the key issue is to obtain a systematic and complete analysis, there are also
some fascinating individual issues. The apparent reversal of initiative and 'causality'
is one. Of course, at one level the causality and initiative must lie together. If agent
A polls agent B to see whether event E has happened, there is a low-level flow of
causality from A to B. However, at a higher level, periodic polling can be seen as

simply an 'implementation issue' and we see the high-level event causality flowing
from B to A.

This paper treads a middle ground between informal statusÐevent timelines and full
specifications. There was not space to delve into a full semantic model of statusÐ
event phenomena. This would help to elucidate some of these issues, but does need
care if status phenomena are to be represented accurately.

We have seen how the causal chain analysis in this paper can help elucidate the
software architecture issues for notification server design. However, the same
causal chains can be seen in office procedures and other humÐhuman interactions.
The power of statusÐevent analysis is that it can account for human, physical and
computational phenomena within a single conceptual framework.

Acknowledgements
This work was partly funded by EPSRC MNA grants GR/L64140 & GR/L64157,
ÒInterfaces and infrastructure for mobile multimedia applicationsÓ, and UK/HK Joint
Research Scheme project 9050101, ÒModelling Behaviour of Agents in CSCWÓ.

References

1. Abowd, G. and A. Dix. Integrating status and event phenomena in formal specifications of
interactive systems. in SIGSOFT'94. 1994. New Orleans: ACM Press. p. 44Ð52.

2. Benford, S., A. Bullock, C. Cook, P. Harvey, P. Ingram and O. Lee, From rooms to
cyberspace: models of interaction in large virtual computer spaces. Interacting with
Computers, 1993. 5(2): p. 217Ð237.

3. Benford, S. and L. Fahl�n. A spatial model of interaction in large virtual environments. in
Proceedings of ECSCW'93. 1993. Kluwer Academic. p. 109Ð124.

4. Benford, S., L. Fahlen, C. Greenhalge and J. Bowers. Managing mutual awareness in
collaborative virtual environments. in Proceedings of ACM SIGCHI conference on Virtual
Reality and Technology Ð VRST'94. 1994. Singapore: ACM Press.

5. Brewster, S.A., Providing a structured method for integrating non-speech audio into human-
computer interfaces. 1994, PhD Thesis, University of York, UK.

6. Brewster, S.A., P.C. Wright, A.J. Dix and A.D.N. Edwards. The Sonic Enhancement of
Graphical Buttons. in HumanÐComputer Interaction Ð Interact'95. 1995. Lillehammer: . p.
43Ð48.

7. Brewster, S.A., P.C. Wright and A.D.N. Edwards. The design and evaluation of an
auditory-enhanced scrollbar. in Proceedings of CHIÕ94. 1994. Boston, Massachusetts: ACM
Press, Addison-Wesley. p. 173-179.

8. Chaochen, Z., C.A.R. Hoare and A.P. Ravn, A calculus of durations. Information
Processing Letters, 1991. 40(5): p. 269Ð276.

9. Chaochen, Z., A.P. Ravn and M.R. Hansen, An extended duration calculus for hybrid real-
time systems, in Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel,
Editors. 1993, LNCS 736, Springer-Verlag: p. 36Ð59.

10. Dewan, P. A tour of the Suite user interface software. in UIST'90: Proceedings of the 3rd
ACM SIGGRAPH Symposium on User Interface Software and Technology. 1990. ACM Press.
p. 57Ð65.

11. Dewan, P. and R. Choudhary, A high-level, and flexible framework for implementing
mulituser interfaces. ACM Transaction on Information Systems, 1992. 10(4): p. 345Ð380.

12. Dix, A., An agent based architecture for groupware applications, Editor^Editors. 1993,
Computer Science Department, University of York:

13. Dix, A. and G. Abowd, Delays and Temporal Incoherence Due to Mediated StatusÐStatus
Mappings. SIGCHI Bullitin, 1996. 28(2): p. 47Ð49.

14. Dix, A. and G. Abowd, Modelling status and event behaviour of interactive systems.
Software Engineering Journal, 1996. 11(6): p. 334Ð346.

15. Dix, A. and S.A. Brewster. Causing Trouble with Buttons. in Ancillary Proceedings of
HCI'94. 1994. Glasgow: .

16. Dix, A., J. Finlay, G. Abowd and R. Beale, HumanÐComputer Interaction (Second Edition).
1998, Prentice Hall.

17. Dix, A., D. Ramduny and J. Wilkinson, Interaction in the Large. Interacting with
Computers - Special Issue on Temporal Aspects of Usability (to appear), 1998. .

18. Dix, A.J., Formal Methods for Interactive Systems. 1991, Academic Press.
19. Dix, A.J. Status and events: static and dynamic properties of interactive systems. in

Proceedings of the Eurographics Seminar: Formal Methods in Computer Graphics. 1991.
Marina di Carrara, Italy: .

20. Dix, A.J. Beyond the interface. in Engineering for Human-Computer Interaction: Proceedings
of IFIP TC2/WG2.7 Working Conference. 1992. Ellivuori, Finland: North-Holland. p. 171-
190.

21. Dix, A.J., D. Ramduny and J. Wilkinson. Long-Term Interaction: Learning the 4 Rs. in
CHI'96 Conference Companion. 1996. Vancouver: ACM Press. p. 169Ð170.

22. Dix, A.J. and C. Runciman. Abstract models of interactive systems. in People and Computers:
Designing the Interface. 1985. Cambridge University Press. p. 13-22.

23. Dourish, P. and V. Bellotti. Awareness and coordination in shared workspaces. in CSCW'92.
1992. Toronto, Canada: ACM Press. p. 107Ð113.

24. Duke, D.J. and M.D. Harrison, Abstract Interaction Objects. Computer Graphics Forum,
1993. 12(3): p. 25Ð36.

25. Flanagan, D., Java in a Nutshell 2nd Edition (Java 1.1). 1997, O'Reilly.
26. Goldberg, A., Smalltalk-80, The interactive programming environment. 1984, Addison-

Wesley.
27. Grossman, R.L., A. Nerode, A.P. Ravn and H. Rischel, ed. Hybrid Systems. 1993, LNCS

736, Springer-Verlag: .
28. Hill, R.D. The Rendezvous constraint management system. in UISTÕ93: Proceedings of the

ACM Symposium on User Interface Software and Technology. 1993. ACM Press. p. 225Ð234.
29. Hill, R.D., T. Brinck, S.L. Rohall, J.F. Patterson and W. Wilner, The Rendezvous

architecture and language for constructing multi-user applications. ACM Transactions on
Computer-Human Interaction, 1994. 1(2): p. 81Ð125.

30. Lauwers, J.C. and K.A. Lantz. Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems. in Proceedings
of CHI'90 Human Factors in Computing Systems. 1990. Seattle, Washington, April 1990:
ACM Press. p. 303Ð311.

31. Lewis, The Art and Science of Smalltalk. 1995, Prentice Hall.
32. Moffet, J., J. Hall, A. Coombes and J. McDermid, A model for a casual logic for

requirements engineering. Requirements Engineering, 1996. 1(1): p. 27Ð46.
33. Myers, B.A., D.A. Guise, R.B. Dannenburg, B. Vander Zanden, D.S. Kosbie, E. Pervin,

A. Mickish and P. Marchal, Garnet: comprehansive support for graphical, highly interactive
user interfaces. IEEE Computer, 1990. 28(11): p. 71-85.

34. OSF, OSF/Motif ProgrammerÕs Guide, Revision 2. 1995, Open Software Foundation,
Prentice Hall.

35. Palfreyman, K. and T. Rodden. A Protocol for User Awareness on the World Wide Web. in
Proceedings of CSCW'96. 1996. Boston, Massachusetts, Nov. 1996: ACM Press. p. 130Ð
139.

36. Patern�, F. and G. Faconti. On the use of LOTOS to describe graphical interaction . in
Proceedings of HCI'92: People and Computers VII. 1992. Cambridge University Press. p.
155Ð173.

37. Patern�, F., M.S. Sciacchitano and J. Lowgren. A user interface evaluation mapping physical
user actions to task-driven formal specifications. in Design, Specification and Verification of
Interactive Systems '95. 1995. Springer Verlag. p. 155Ð173.

38. Patterson, J.F., M. Day and J. Kucan. Notification servers for synchronous groupware. in
Proceedings of CSCW'96. 1996. Cambridge, Massachusetts: ACM Press. p. 122Ð129.

39. Ramduny, D., A. Dix and T. Rodden. Getting to Know: the design space for notification
servers. in Proceedings of CSCW'98. 1998. Seattle, Washington: (to appear).

40. Rodden, T. Populating the application: a model of awareness for cooperative applications. in
Proceedings of CSCW'96. 1996. Boston, Massachusetts, Nov. 1996: ACM Press. p. 87Ð96.

41. Rodden, T., K. Cheverst, N. Davies and A. Dix. Exploiting Context in HCI design for
Mobile Systems. in Workshop on Human Computer Interaction with Mobile Devices. 1998.
Glasgow, May 1998: .

42. Sandor, O., C. Bogdan and J. Bowers. Aether: an awareness engine for CSCW. in
Proceedings of ECSCW'97. 1997. Lancaster: Kluwer Academic. p. 221Ð236.

43. Wood, A., CAMEO: Supporting Agent-Application Interaction. 1998, PhD Thesis,
University of Birmingham, UK.

44. Wood, A., A.K. Dey and G.D. Abowd. CyberDesk: Automated Integration of Desktop and
Network Services. in Proceedings of the 1997 conference on Human Factors in Computing
Systems, CHI '97. 1997. ACM Press. p. 552Ð553.

