
Query-through-Drilldown
Data-Oriented Extensional Queries

Alan Dix
Computing Department, InfoLab21

Lancaster University
Lancaster, LA1 4WA
+44 1524 510 319

alan@hcibook.com

Damon Oram
Corporate Information Systems
Information Systems Services

Lancaster University
Lancaster, LA1 4WA

d.oram@lancaster.ac.uk

http://www.hcibook.com/alan/papers/avi2008-query-through-drilldown/

ABSTRACT
Traditional database query formulation is intensional: at the level
of schemas, table and column names. Previous work has shown
that filters can be created using a query paradigm focused on
interaction with data tables. This paper presents a technique,
Query-through-Drilldown, to enable join formulation in a data-
oriented paradigm. Instead of formulating joins at the level of
schemas, the user drills down through tables of data and the query
is implicitly created based on the user's actions. Query-through-
Drilldown has been applied to a large relational database, but
similar techniques could be applied to semi-structured data or
semantic web ontologies.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – query languages.
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – query formulation. H.5.2 [Information
Interfaces and Presentation (e.g., HCI)]: User Interfaces –
graphical user interfaces, interaction styles.

General Terms
Design, Human Factors

Keywords
database query, data-oriented interaction, SQL, tabular interface,
extensional query, data structure mining, query-by-browsing

1. INTRODUCTION
Traditional database query formulation is intensional, users are
forced to formulate their queries in terms of schemas, table and
column names. This often involves users in very abstract thinking,
Boolean logic for defining filters and trying to understand the way
that tables are linked together in joins – especially challenging for

well-normalised databases. While languages and tools for this
may be a powerful for experts, less experienced users may find
them unnatural. Indeed the most successful end-user interaction
techniques: web browsing and spreadsheets both keep the user
focused on the data itself not meta-level descriptions of the data.

This paper takes the position that for many users a more
extensional paradigm based on interacting with data is more
easily understood.

Previous work on Query-by-Browsing has shown that it is
possible to create filters using a query paradigm focused on data;
users interact with and extensional view of a query and a query is
inferred through machine learning. This paper presents a
technique, Query-through-Drilldown, to enable join formulation
in a data-oriented paradigm. Instead of formulating joins at the
level of schema, the user drills down through tables of data and
the query is implicitly created based on the user's actions.

In the next section, the paper begins by discussing the concept of
extensional/data-oriented access. As Query-by-Browsing [5] was
the initial inspiration for this work, we describe this in detail and
analyse some of the generic issues it highlights. In particular
QbB enables the creation of filters by simply allowing the user to
select desired rows from a table of data. However, QbB does not
have any way for the user to create joins.

Section 3 presents Query-through-Drilldown (QtD), a tableau-
based interaction that allows complex multi-table queries to be
created without explicit joins. The technique depends on an
entity-relationship structure, so we also describe techniques to
automatically derive this. Section 4 presents our experiences in
implementing and evaluating a prototype of QtD and section 5
compares QtD with other data-oriented forms of browsing
including semantic web ontologies. Finally, we discuss planned
future work and possible extensions to less structured data.

2. DATA-ORIENTED ACCESS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI'08, 28-30 May , 2008, Napoli, Italy
Copyright 2008 ACM 1-978-60558-141-5...$5.00.

2.1 Intensional vs. extensional data access
In database semantics, following other areas such as logic, a
distinction is drawn between intensional and extensional forms of
description. The intensional form is the query in terms of the
schema, in relational databases usually expressed in SQL whilst
the extensional form is the collection of records.

251

We see similar patterns in other forms of formally structured data,
in particular for semantic web ontologies stored in RDF we have
SPARQL queries (intension) and a corresponding graph/set of
triples (extension) as an output [14]. The powerful thing about
intensional descriptions is that they can be reapplied to new data
to obtain precise results, however they are often only usable by
experts. Indeed even early studies of database query mechanisms
showed that those that incorporated some form of tabular
interface outperformed purely textual interfaces such as SQL [7].

Figure 1. QbB (web interface) – user selects records. Figure 2. QbB generates SQL and highlights query results.

Even in information retrieval (IR) systems or web search there is
often a Boolean query (intension) giving rise to a set of pages or
documents (extension), although the distinction is less sharp. For
simple search the distinctions become more problematic as the
search terms used are themselves part of the content of the
document, however search terms can be re-interpreted over a
different collection, so have an intensional aspect – indeed part of
the skill of a good web user is knowing which terms to use rather
than which pages to visit. In web search and certain forms of
bibliographic search, the focus is much more in skimming the
data of the results to choose appropriate ones, rather than
necessarily tuning the search terms to be precisely correct.

Web and hypertext browsing is perhaps more complex still as the
'schema', such that there is, is at best node + link. The user's
focus here is almost solely on the content except in sophisticated
systems with multiple link types. This is also true of many forms
of graph or tree browsing, although in such case the content may
be represented simply by a name or icon.

Similarity-based or recommender systems are also more data
oriented, for example, Amazon recommendations are specific
books, not specifications of interesting books. Similarly, the
Scatter-Gather Browser [11] clusters documents, but presents the
clusters in terms of generated summaries – while these are not
instances, the summaries are focused on the data content.

In general intensional descriptions are more precise and
generalisable, but correspondingly more complex and hard to
understand. In contrast extensional descriptions are simpler and
more comprehensible, but cannot be easily generalised and hard
to be sure of unless checked exhaustively.

The challenge is to use both effectively where they are strong.

2.2 Query-by-Browsing
Query-by-Browsing precisely addresses this issue by effectively
turning the traditional query processing pipe on its head, starting
with an extensional description and generating an intensional
description from it.

QbB was first described in a concept paper in 1992 and later
implemented [4,5]. However it is also available as a web demo
and the screenshots are taken from that1.

Figure 1 shows the first stage of use. The user has selected a
number of records that are either wanted (ticks) or not wanted
(crosses). In this initial stage the user's focus is entirely on the
list of records; that is extensional; all the user is doing is selecting
positive and negative examples.

After a period the user clicks "Make a Query" and the system
generates an SQL query (Figure 2):

SELECT * FROM qbb_ex1 WHERE Wage > = 1500

In the initial paper this step was described as occurring when the
system had sufficient confidence in its inferred query, but in all
the implemented systems this is at the user's request.

Looking in detail at Figure 2, we can see that there is both the
SQL query in the left hand area and also highlighted items in the
listing on the right. The highlighted items are those that would be
retuned by the SQL query. That is, the result is both intensional
(the SQL) and extensional (the highlighted items).

The QbB papers emphasise the importance of this dual
representation. Whilst a user may find it hard to produce
syntactically correct SQL they may be able to recognise whether
it is correct. For more complex Boolean queries the dual
representation may make it easier for a user to make sense of the
connective – for example the confusing difference between 'and'
as used in Boolean logic and its everyday use.

The highlighted records (extensional output) make it easy for the
user to verify the query, selecting the appropriate records from

1 "Query-by-Browsing on the Web". accessed 19 Dec 2007.

http://www.meandeviation.com/qbb/qbb.php

252

those that can be seen. However, the SQL query itself
(intensional output), allows the user to verify that the query will
also apply correctly to unseen records. This would be important
if, for example, the selected records were to be updated in some
way … perhaps awarding a pay increase!

QbB uses machine-learning to create the query. The algorithm in
the original implementation and the web interface is a variant of
Quinlan's ID3 [15], but alternative algorithms are also described
[6]. The algorithm used in the extant implementations is
guaranteed to give a consistent result – that is the records selected
by the query will include all the positive examples and none of
the negative ones. However, there may be several queries that are
consistent with a given set of positive and negative examples, so
while the algorithm is consistent it may not accord with the
intention of the user. The user may detect this either because the
highlighted rows are not as expected or because the query does
not seem right (e.g. the query says "Wage>=15000", but the user
knows that the key value is really a tax threshold of 14250).

If the user is not satisfied with the inferred query, more positive
and negative examples can be given. The highlighted records are
again useful as any that are highlighted but not wanted are
obvious candidates to be explicitly excluded and vice versa. The
user then requests a fresh query and iterates until the returned
query is satisfactory. The QbB papers also suggest that the user
should be able to interact with the query – particularly easy if the
query return format is a Relational Query by Example tableau
[20]. That is, the user's input to the system could be a mixture of
intensional and extensional elements. However, again this is not
implemented in the extant systems.

2.3 Table-based interaction
As well as being data-oriented, QbB is table based. In fact, the
basic principles of data-oriented querying could be applied to
non-tabular interfaces, it is no accident that in a system designed
to be easy for non-experts tables were chosen as a reference
implementation. Early studies comparing end-user performance
with several database query facilities (including SQL and QBE)
found that those facilities that included a tabular interface
outperformed those based on a purely textural SQL interface [7].
While there are many times when various forms of graphical or
network representations can be useful, tables, however, mundane,
are at the heart of many data-intensive interfaces not least the
ubiquitous spreadsheet.

While tables are often the output format of choice, they are also
used as a central part of almost any information rich interactive
environment including lists of messages in email clients, files in a
directory or classes in an IDE. They have also been used in
various forms of interactive visualization, notably for exploring
patterns, correlations and trends in Table Lens [16]. Even Scatter-
Gather [11] can be seen as partially table/list focused. In all of
these cases it is the records actually selected by the user that are
of interest (the extension) rather than any inferred query of
criteria.

An interesting exception to this is Query-by-Excel [19]. Here the
user uses a spreadsheet that includes extracts from several tables
in the full database. Standard spreadsheet functions and formulae
are used to link the data in the different table extracts. When the
user is satisfied that the Excel spreadsheet it is uploaded into the

Query-by-Excel system and the formulae on the extracts are
generalised into a full database query or procedure.

Arguably this use of Excel (and indeed much ordinary use) is
intensional as the user manipulates formulae. Indeed the power of
spreadsheet use is the rapid and incremental turnaround between
intensional formulae-focused steps and extensional reflection on
the values in the cells.

Query-by-Excel is also particularly interesting as the system can
use the formulae to create linkage between tables as well as
calculation/selection within them. That is Query-by-Excel can
create joins, one of the weaknesses of Query-by-Browsing.

3. QUERY-THROUGH-DRILLDOWN

3.1 The concept
Query-by-Browsing demonstrates how data-oriented, table-based
interaction can be used to create generic queries. However, a
clear weakness is its lack of provision for joins. This raises the
question as to whether a similar philosophy of extensional
querying can be used to create inter-table joins.

When tables are used in standard interactive applications they
may be used to select multiple items for some operation (e.g. to
which classifications an uploaded paper belongs) or to allow
drilldown to further information. In the latter case this may result
in the selected item being opened in its own window (as when an
email or file opens) or some sort of hierarchical expansion in
place or an adjoining frame.

We will effectively use a form of the last of these. However,
typically when rows are 'expanded' the focus is on a single row,
which already represents a single item. In contrast in a database
table listing, it is some of the columns that represent foreign keys
or shared values that form a point of potential connection to
another table. We use columnar drilldown as a way for users to
view particular information linked to a given set of records and in
so doing implicitly create a join between those tables. For
example, if there is a "City Name" column in a table, it could be
connected either a table of tourist information about the city or
local government. The user's choice of which of these to follow
effectively creates a join.

3.2 Scenario
To see how this works we will work through a simple scenario.

We assume as a start point that a form of entity-relation structure
already exists for the database. That is we know which columns
in any table connect to which others. This might have been
created by hand, or may be mined automatically. In section 3.4
we will describe methods to achieve the latter, but for now will
simply assume it exists.

 (a) (b)

Figure 3. Selecting a column to drilldown through

253

Figure 3.a shows a listing a single table of department staff. In
Figure 3.b the user selects the name column in order to find out
more about the people. The system offers two options as there are
two tables that have columns that are linked to the name field in
department listing. In the figure these are named by the
table name and column they are linked to, but part of a hand-
crafted entity-relation structure might include more meaningful
names for the relationships.

When the user selects one of the links from the name column the
columns from the selected table are appended to the table. Figure
4 shows this in the case where the user has selected to expand the
payroll record. In this case we have assumed there is a unique
payroll item for each person so the table simply gets wider.

Figure 4. Selected column expands

Only one column is shown corresponding to the case if the
payroll table had only two columns. In practice tables tend to
have many columns and so the user may need to hide unwanted
columns. To make this easier the system could default to show
the most common columns from the table first (determined by
handcrafted meta-data, automated analysis, or personal profile).

Figure 5 shows the SQL generated by this drill down. Unlike
Query-by-Browsing we are not currently displaying this to the
user in parallel to the tabular interface, but for experts this may be
useful in order to generate the query, perhaps alongside a client or
end user, and then copy the SQL for later use.

SELECT d.department,
 d.name,
 p.salary
FROM department d
INNER JOIN payroll p
ON d.empname = p.empname

Figure 5. Generated SQL
Several linked tables may be opened and Figure 6 shows the
results if the user drills through the name to the projects table.
Note it is shown at the same level as payroll to make clear it is
a child (drilled from) the original department listing
table. In this case, the projects are assumed to be in an m-n
relationship with the names from the department listing.
So in some cases there are several projects listed for each
individual and in some cases none.

Figure 6. Additional column for m–n relation.

Note that in the case of m–n relationships a LEFT JOIN is
generated; that is all rows are retained in the department
listing table even if there is no corresponding name in the
projects table (people who are not members of any projects).
This is because the user has started with the list of staff members
in departments and so it makes sense not to lose these during
drilldown. However, it would be equally odd to find extra names
appear as it would with a RIGHT JOIN. Note that choosing the
right kind of join is often confusing even for semi-experienced
database users. However, the way in which the user constructs a
query makes it obvious which kind of join is required.

Similar techniques can be used to drill down further through the
linked tables, to add computed columns, filter and sort 2. Figure 7
shows the end point of a series of interaction following on from
Figure 6. Three computed columns have been added two
connected with the department listing table and one with
the projects (indicated by heights of the tabs). The overall
table has also been reordered by project name. The relative
heights of the table names help the user keep track of the
relationship between the tables – the payroll table is only
indirectly linked to the projects through the department
listing. This is similar to the effect that would have happened
if the user had started with the projects, drilled through to
department listing and then to payroll.

Figure 7. Complex query: added columns and reordered

(also see colour plate)

3.3 Relationship Model
The relational structure of a database can be thought of as a
labelled graph where the vertices are tables and the labels on
edges are relationships between foreign keys or shared values:

Schema = < Tables, Reln >

Reln ⊆ Table × Table × SharedColumnFormula

The SharedColumnFormula will typically be a set of equalities
between fields, but may be more complex as in an SQL JOIN
clause. As noted earlier, for hand-crafted structures the
relationships could be given meaningful names in each direction.

2 A longer scenario with more of these features can be found at
http://www.hcibook.com/alan/teaching/projects/workspace-drill-
down.pdf

254

department listing

payroll projects

budgets

funding bodies

empname

name

member code

department

dept

Figure 8. Relationship graph for database

Figure 8 shows an example database relationship structure
corresponding to the example in Figures 37.

The query generated by Query-through-Drilldown is effectively a
tree where the nodes are tables and the edges relations:

QbBquery = < Tree(Nodes,Edges), NodeMap, EdgeMap >

root ∈ Nodes
parent, child: Edges → Nodes
NodeMap: Nodes → Tables
EdgeMap: Edges → Reln

∀ e ∈ Edges: <t1,t2,c}> = EdgeMap(e)
 p = NodeMap(parent(e)) ∧ c = NodeMap(child(e))
 ⇒ (t1 = p ∧ t2 = c) ∨ (t1 = c ∧ t2 = p)

Note that the mapping between Edges and Tables need not be
injective as a table may be returned to during drill down. For
example, from the configuration in figure 6 it would be possible
to drill down through projects back to the department
listing. This would give for each person in the department a
list of the people who are in a project with them. Figure 9 shows
a query tree for figure 6 (solid arrows) with the dashed arrow
representing the additional drilldown back from projects to
department listing.

Figure 9. Query tree

3.4 Mining the Model
As noted the relationship model may be constructed by hand in
which case meaningful names may be added for many of the
relationships. However, for large databases or informal sources
(such as a .csv file downloaded from the web) such hand
annotation may be infeasible or impossible. Indeed even integrity
constraints such as foreign keys are often only maintained
implicitly in code and not in the database schema, so it seems
likely that some form of automatic structure is needed.

Foreign keys are an obvious first step as they clearly establish a
semantic connection between tables. These are most important
(and happily most likely to be present) where the keys are simple
ids as these are hardest to match implicitly.

Where there is no semantic information available or it is
incomplete, the data itself can be used by matching the values in
columns across different tables. If there is a high level of overlap

between values in two columns then we can infer a relationship.
However, this needs to take into account the density of values in
their respective domains and especially for integer values. It is
common to find id columns in tables consisting mainly of the
initial N integers. Without a density check there would be many
false positives as columns of ids and similar numbers of elements
would overlap even where there is no real relationship. However,
ignoring such accidental number range matches does mean that
foreign id keys tend to be missed.

The example database that we have been using had a large
number of such id fields and so techniques with more semantic
information were required. Happily the database in question had
large numbers of stored procedures. These procedures can be
accessed via a straightforward SQL query (Figure 10).

SELECT text
FROM syscomments sc
INNER JOIN sysobjects so
ON sc.id = so.id
WHERE so.xtype = 'P'

Figure 10. SQL to access stored procedures
The queries in these formed a rich source to analyse (see figure
11). Wherever a JOIN is found (explicit or implicit in the form of
"SELECT …WHERE table1, table2 …") we use the list of fields
connecting the two to establish a relationship.

SELECT ss.student_id, sname = ss.surname +
', ' + ss.forename, … more fields …
 FROM std s
 INNER JOIN std_snapshot ss
 ON ss.student_id = s.student_id
 INNER JOIN std_address sa
 ON ss.student_id = sa.student_id
 AND sa.address_type_lid = '000763'
 … 10 more lines containing 3 more INNER JOINS …
 INNER JOIN org o
 ON ss.org_id = o.org_id

Figure 11. Typical SQL in stored procedures
This technique is not guaranteed to find every relationship; indeed
in the database we were using with 300 tables it is likely that
some potential relationships have never been traversed in previous
use of the database. However, where stored procedures are
heavily used, they are likely to find the most typical and useful
relationships, including most of the important foreign keys.

A full SQL parser could be used for this extraction, but in fact a
few regular expressions were sufficient to extract the majority of
JOINS and their linkage columns. The exceptions were where
aliases were used for table names (which could be captured by
more complex regular expressions) and places where the JOIN
includes database functions such as SUBSTRING() or INT().

Where stored procedures are not heavily used, the SQL for the
queries may be scattered in the source code of many programs.
However, databases often have some form of query logging, for
example MySQL has a general query log where every query
received is recorded [10]. However, compared to the use of
stored procedures this is more computationally intensive as there
will be many instances of essentially the same query with
different parameterisations.

255

4. PROTOTYPE AND EXPERIENCE
4.1 Implementation
A prototype of Query-through-Drilldown has been created as a
web-based interface using .NET framework on the server-side. It
was originally hoped that the DataGrid control supplied in Visual
Studio.NET web server could be extended. However, it was not
possible to modify this to allow the step-down headings and so a
custom solution was created using CSS and JavaScript.

The prototype has been developed and tested on our university
student information database, which includes over 300 tables
demonstrating scalability. However, because of obvious issues of
privacy and security, the full and partial screenshots below are all
taken from the Northwind, the example database, which forms
part of the Microsoft SQL Server 2000.

Figure 12 shows a four table join constructed using the prototype.
Note that even in the example database there are a substantial
number of rows unlike the simulated screen shots shown earlier.

Figure 12. Prototype with four tables joined

(also see colour plate)
While there are still many features we would like to add the
prototype includes most of the key elements envisioned. For
example, Figure 13 shows the query in figure 12 after further
interaction adding a computed column and filtering the column
based on the CustomerID column.

Figure 13. Prototype after filtering and computed column

(also see colour plate)

4.2 Evaluation
Formative evaluation has been carried out with two groups of
users one non-technical group and one technical group.

4.2.1 Non-technical users
Six non-technical users from an office environment took part in a
more formal evaluation. They were initially contacted through
their line-manager and then given some information ahead of the
session by email describing the purpose of the study, duration and
expectations on them. The experiment itself took place in their
own premises, but with software installed by one of the authors.
Due to security restrictions on the student database and to
maintain privacy the Northwind database was used in these
experiments. During the evaluation session itself the participants
completed a pre-questionnaire to establish prior knowledge and
then followed a number of tasks using a written think-aloud
protocol (that is, rather than a verbal think-aloud, they were asked
to keep notes while working and perform post-task reporting).

None of the non-technical user group had more than passing
knowledge of SQL or SQL Server, although they had varying, but
not deep, knowledge of desktop databases systems (particularly
Access) and, once the term was explained, recognised Query by
Example from its use in Access. All had extensive experience in
use of spreadsheets.

Many of the user comments referred to fine details of the interface
or requests for additional features such as the lack of short-cut
keys, sorting on several columns, difficulty of finding certain
menus, and confusing error messages. It is always a problem of
such evaluations that many user comments relate to superficial
interface 'bugs' rather than specific issues relating to the novel
aspects. While the former are useful to improve a production
system, it is the latter we really need at this formative stage.
Happily, some of the comments were indicative of deeper issues.

One such issue was that column names were not regarded as 'user
friendly' – they were simply the names of the columns in the
database. In desktop databases there is usually provision for
having column titles that are more meaningful to users than the
column names found in the database schema. In a large
commercial database such information is more often embedded in
programs or reports. Where a report or UI generator has been
used it may be possible to extract the column titles automatically,
rather like the JOINS were mined from stored SQL queries.
However, even if such column titles were found there may be
several such names as the same database row may be presented
differently to different kinds of user. This is not just an issue for
Query-through-Drilldown, but any system that provides a
universal user-interface to databases. In practice this requires
semi-automatic user profiling or hand annotation, although this
could be inferred if users are allowed to edit the column headings.

Another class of issues were due to the fact that even in the
experiment we were using realistic data with substantial numbers
of columns and records. When discussing figure 4, we we
assumed that unwanted columns had been hidden from the
projects table when it was added to the tableaux. However, even
when the user only opens essential columns, the tableau grows in
width and users complained about horizontal scrolling. This is a
problem in any tabular layout, and certainly in more complex
spreadsheets. Potentially the focus+context techniques of Table
Lens would be useful here [16] or the grouping of columns as
used in HyperGrid [8]. Vertical scrolling was also mentioned as a
problem, which again might be helped by elision techniques. The

256

shear number of options created by the database size can also be
daunting and may require more structured menus (see Fig 14).

Figure 14. Long menus!

As noted the prototype has been developed using a very large
database and, somewhat surprisingly, it has scaled without undue
problems. However, users did note some delay on more complex
refinements. This is because with a few interactions users were
able to create complex queries with multiple joins and very large
result sets. If this were submitted as an SQL query a delay a few
seconds would seem reasonable, but in an interactive setting
second or sub-second responses are expected. The current
prototype is completely transaction based and stateless. However,
if the interface were delivered as a stand-alone application or if
the web interface used AJAX, then it would be possible to know
which records the user was currently viewing. This would enable
queries to be executed against the sub-selection of visible records
substantially increasing the speed and in most cases making query
processing proportional to the number of viewed records rather
than the total table size. Again these response issues are ones that
affect any highly interactive visualisation or query technique.

4.2.2 Technical users
Four technical users, two from an academic support environment
and two from a commercial company were recruited for a form of
focus group. These users all had high levels of database
knowledge and of SQL in particular.

These users were treated very much in a co-designer/participative
role. They were given access to the complete source code of the
system before the session (in order to allow comments at a system
architecture level) and were given a short presentation as to the
purposes and vision of the system followed by hands-on time
during the discussion session.

As with the non-technical users some of the discussion related to
issues that, while important for practical deployment, were not
directly related to the fundamental nature of the new technique;
for example where configuration options should be stored, better
use of the status line and window title, and browser-specific
features. However, as these expert users had more knowledge of
the purposes of the system they were also able to give more
specific remarks about the system concept including the ER
mining techniques. In particular they highlighted some of the

limitations noted in section 3.4 regarding the regular expressions
used to analyse stored procedures.

A major problem they noted, again common to most data
visualisation systems, was how to connect to a server, choose a
database and an initial table. Once started it becomes easier to
navigate based on context, but how does one get started?

The group also noted that it would be useful for users to be able to
bookmark states of the system. The ease of interaction meant it
was easy to try out something, make a mistake and lose track of
where one had been. Even implementing undo when very large
SQL statements are being executed 'under the hood' is
problematic, certainly requiring either caching or localisation
techniques similar to those discussed to improve interactive
performance in the previous section. However, explicit
bookmarks would be useful too, not just during a single
interactive session, but also to return to later. Sharing such useful
queries would be one way to alleviate the 'blank screen' problem.

The knowledge of the technical users meant they could question
the detailed semantics of Query-by-Browsing. In particular they
were interested in the semantics of aggregation when columns
were hidden. Interestingly the most intuitive semantics for a user
interacting with the system is not the most 'obvious' SQL. Indeed
some forms of sorting may require embedded SELECTs to create
the 'right' answers for a user. The danger of this is that it may end
up being confusing for the expert users.

The group suggested adding (the option of) an SQL window to
show the actual query being constructed, as is found in Query-by-
Browsing. This would fit more closely to QbB's paradigm of
optimally combining intensional and extensional representations
and also clarify expert users' questions about the semantics of
more complex queries.

5. RELATED TECHNIQUES
We have already discussed several table-based interaction
techniques in section 2.3. In addition, forms of drilldown or
click-through have been used extensively for navigating data,
from file browsers to the web, and in some places to aid query
constructions.

Some uses of drill down operate at the level of instances of data,
such as with links in web pages. Often, like web pages, these
replace the current view so that the user 'moves' through the
information space. However, rather as we have done with tables,
this act of movement can be used to derive more generic queries.
In the PESTO [2] system an OO database is browsed by drilling
through properties of individual objects instances and each object
(or object collection) is opened in a separate window connected to
its parent in a graph. However, the path taken effectively forms a
generic query and so if the parent object is changed then all the
ancestors change accordingly. While Query-by-Browsing shows
all the data in a tableau, PESTO focuses on the equivalent of a
single row. Each has advantages and there would be arguments
for being able to move back and forth between such
representations.

Drilldown techniques are an obvious way to interact with
hierarchical classifications and have been used extensively in
mundane interfaces such as file browsers and also ones involving
multi-faceted data or polyarchies [12, 3,17]. Drill-down has also

257

been used for database queries; one system, also called Query by
Browsing [13], uses a file-system-like folder representation where
each folder is effectively a table or class, and drilling down
through a folder reveals not the rows of the table (instances), but
other folders that are linked to the chosen one through the
relational structure. While in some ways similar to our system
this operates entirely at the schema (intensional) level.

There has been a long tradition of visual query languages [1], but
most focus on schema-level constructions. An interesting
example is a recent US patent which describes a table-oriented
query formulation technique [9] using the relative positioning of
tables to represent different forms of relationship, so, whilst
displaying data, this is still schema focused.

Query-through-Drilldown uses the relational structure of a
database and could easily be used on similar structures, notably
semantic web ontologies. In that area m-Spaces [18] are perhaps
most closely related as they also tabular layout of instances of
classes to perform multi-faceted selections in related classes.
However, in m-Spaces the equivalent of the JOIN, that is the
specification of relationships between classes, is performed in a
configuration step that requires more expertise than the selection
interactions.

6. CONCLUSIONS
We have demonstrated how a data-oriented interaction paradigm
can be used to create complex queries including joins. Whilst
most comparable methods focus on the schema, that is extensional
definitions of the query, the focus in Query-through-Drilldown is
on the data, that is intensional.

While Query-through-Drilldown was envisaged as an end-user
technique, from the evaluation it emerged that it would also be of
value to experts in helping them rapidly create complex queries,
but to do this would require a more explicit representation of the
query, as in QbB.

Query-through-Drilldown has been described here and prototyped
as a database interface. However, it was originally envisaged
some years ago as a method to operate over other forms of tabular
data as found ubiquitously in spreadsheets, word-processor
documents and web pages, allowing integration of semi-structured
data with fully structured databases. In the future we would like
to create some form of adaptors to link such data with more
structured databases and semantic web sources.

Given the inspiration for the extensional paradigm is Query-by-
Browsing we also intend to integrate QbB filtering with Query-
through-Drilldown giving an end-to-end data-oriented query
platform.

7. ACKNOWLEDGMENTS
We are grateful to the subjects who gave their time during this
project and a special mention for the baby who arrived in the
middle. Also thanks to Andrew and Russell for rich discussions
way back in 1998 when the first germs of this concept began.

8. REFERENCES
[1] Batini, C. Catarci, T. Costabile, M.F. Levialdi, S. 1991.

Visual strategies for querying databases In Proc. of IEEE

Workshop on Visual Languages (Kobe, Japan, 8-11 Oct
1991), 183-189.

[2] Carey, M., Haas, L., Maganty, V., and Williams. J. 1996.
PESTO : an integrated query/browser for object databases. In
Proc. of the Int. Conference on Very Large Databases
(VLDB), (Mumbai, India, August 1996). 203-214

[3] Conklin, N., Prabhakar, S., and North, C. 2002. Multiple
Foci Drill-Down through Tuple and Attribute Aggregation
Polyarchies in Tabular Data. In Proc. of the IEEE
Symposium on information Visualization (InfoVis'02)
(October 28 - 29, 2002). IEEE Comp. Soc., 131–134

[4] Dix, A. 1992. Human issues in the use of pattern recognition
techniques. In Neural Networks and Pattern Recognition in
Human Computer Interaction Eds. R. Beale and J. Finlay.
Ellis Horwood. 429-451.

[5] Dix, A. and Patrick, A. 1994. Query By Browsing. In Proc.
of IDS'94: The 2nd International Workshop on User
Interfaces to Databases, P. Sawyer, Ed. Springer Verlag.
236-248.

[6] Dix, A. 1998. Interactive Querying - locating and
discovering information. Second Workshop on Information
Retrieval and Human Computer Interaction, (Glasgow, 11th
Sept. 1998). http://www.hcibook.com/alan/papers/IQ98/

[7] Greene, S. L., Gomez, L. M., and Devlin, S. J. (1986). A
Cognitive Analysis of Database Query Production, In Proc.
of the Human Factors Society, 9-13.

[8] Jetter, H.-C., Gerken, J., Konig, W., Grun, C. and Reiterer,
H. (2005): HyperGrid - Accessing Complex Information
Spaces. In: Proc. of the HCI05 Conference on People and
Computers XIX 2005. 349-364.

[9] Liang, G. 2007. Method and System for Visual Query
Construction and Representation. United States Patent
20070260582. Publication Date: 11/08/2007.
http://www.freepatentsonline.com/20070260582.html

[10] MySQL 5.1 Reference Manual, Section 5.2.3. The General
Query Log. Accessed 19th December 2007.
http://dev.mysql.com/doc/refman/5.1/en/query-log.html

[11] Pirolli, P., Schank, P., Hearst, M., and Diehl, C. 1996.
Scatter/gather browsing communicates the topic structure of
a very large text collection. In Proc. CHI '96. ACM, New
York, NY, 213-220.

[12] Pollitt, A. S., Ellis, G. P., and Smith, M. P. 1994.
HIBROWSE for bibliographic database. J. Inf. Sci. 20, 6
(Nov. 1994), 413-426.

[13] Polyviou, S., Evripidou, P. and Samaras, G. 2004. Query by
Browsing: A Visual Query Language Based on the
Relational Model and the Desktop User Interface Paradigm.
The 3rd Hellenic Symposium on Data Management,
(HDMS04), (Athens, Greece, 28-29 June 2004).

[14] Prud'hommeaux, E. and Seaborne, A. (eds.) 2007. SPARQL
Query Language for RDF. W3C Recommendation, 12
November 2007, http://www.w3.org/TR/2007/PR-rdf-sparql-
query-20071112/. Latest version available at
http://www.w3.org/TR/rdf-sparql-query/.

[15] Quinlan, J. R. 1986. Induction of Decision Trees. Mach.
Learn. 1, 1 (Mar. 1986), 81-106.

258

[16] Rao, R. and Card, S. K. 1994. The table lens: merging
graphical and symbolic representations in an interactive
focus + context visualization for tabular information. In
Proc. CHI '94. ACM, New York, 318-322

[17] Robertson, G., Cameron, K., Czerwinski, M., and Robbins,
D. 2002. Polyarchy visualization: visualizing multiple
intersecting hierarchies. In Proc. CHI '02. ACM, New York,
NY, 423-430.

[18] schraefel, m. Karam, M., and Zhao, S. 2003. mSpace:
interaction design for user-determined, adaptable domain
exploration in hypermedia. In Proc. AH2003 Workshop on

Adaptive Hypermedia and Adaptive Web-Based Systems,,
217–235

[19] Witkowski, A., Bellamkonda, S., Bozkaya, T., Naimat, A.,
Sheng, L., Subramanian, S., and Waingold, A. 2005. Query
by Excel. In Proc. of the 31st international Conference on
Very Large Data Bases (Trondheim, Norway, August 30 -
September 02, 2005). Very Large Data Bases. VLDB
Endowment, 1204-1215.

[20] Zloof, M. (1975). Query by example. Proc. AFIPS National
Computer Conf. 44, AFIPS Press, New Jersey. 431-438.

259

	1. INTRODUCTION
	2. DATA-ORIENTED ACCESS
	2.1 Intensional vs. extensional data access
	Query-by-Browsing
	2.3 Table-based interaction

	3. QUERY-THROUGH-DRILLDOWN
	3.1 The concept
	3.2 Scenario
	3.3 Relationship Model
	3.4 Mining the Model

	4. PROTOTYPE AND EXPERIENCE
	4.1 Implementation
	4.2 Evaluation
	4.2.1 Non-technical users
	4.2.2 Technical users

	5. RELATED TECHNIQUES
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

