
intelligent context-sensitive interactions
 on desktop and the web

Alan Dix1, Tiziana Catarci2, Benjamin Habegger2, Yannis Ioannidis3, Azrina Kamaruddin1,
Akrivi Katifori3, Giorgos Lepouras3,4, Antonella Poggi2, Devina Ramduny-Ellis1

1. Computing Department
Lancaster University, Lancaster, UK

2. Dipartimento di Informatica e Sistemistica
Universita' di Roma "La Sapienza", Rome, Italy

3. Department of Informatics & Telecommunications
University of Athens, Athens, Hellas (Greece)

4. Dept. of Computer Science and Technology,
University of Peloponnese, Tripolis, Hellas (Greece)

alan@hcibook.com, catarci@dis.uniroma1.it, benjamin.habegger@dis.uniroma1.it,
yannis@di.uoa.gr, a.kamaruddin@lancaster.ac.uk, vivi@mm.di.uoa.gr,
gl@uop.gr, antonella.poggi@dis.uniroma1.it, devina@comp.lancs.ac.uk

http://www.hcibook.com/alan/papers/avi2006-context/

ABSTRACT

In this paper we describe briefly three systems: onCue a

desktop internet-access toolbar, Snip!t a web-based

bookmarking application and ontoPIM an ontology-based

personal task-management system. These embody context

issues to differing degrees, and we use them to exemplify more

general issues concerning the use of contextual information in

'intelligent' interfaces. We look at issues relating to interaction

and 'appropriate intelligence', at different types of context that

arise and at architectural lessons we have learnt. We also

highlight outstanding problems, in particular the need to

computationally describe and communicate context where
reasoning and inference is distributed.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces – Theory and methods, User-centered design.

H.1.2 [Models and Principles]: User/Machine Systems –
Human factors.

General Terms

Algorithms, Design.

Keywords

Context, human computer interaction, natural interaction, user

experience, dynamic interaction, intelligent interfaces

1. Introduction
In this paper we describe briefly three systems that embody

context issues to differing degrees, and use these to exemplify

some more general issues about the use of context and how to

use contextual information in 'intelligent' interfaces.

The systems we will look at differ in their level of

development: the first, onCue, was developed and distributed

commercially a few years ago; the second, Snip!t, is currently

available as a web-based tool, but is still under development;
and the third, ontoPIM, a is still at design stage.

2. Three Systems

2.1 onCue
onCue was produced and distributed by aQtive, a dot.com

company that traded between 1998 and 2000 [Dix, 2000].

onCue is a form of intelligent toolbar, sitting at the side of the

screen and watching for changes to the clipboard (through

copy–paste). When the clipboard changes, onCue would alter

its icons to suggest additional things that the user might like to

do with the clipboard contents. For example, if the user selected

a person's name various web-based directories would be

suggested, if instead a table of numbers were selected, graphs

and spreadsheet options would be suggested. The icons did not

suddenly change, but instead slowly faded in and out over a
period of about 1 second in order to not distract the user.

onCue was context sensitive in the sense that

the toolbar altered depending on the users

current focus insofar as this was exposed by

the most recent copy/cut–paste. However, it

did not demand attention in that the slow fade

of icons would not distract the user and, more

important, unlike the Microsoft paper clip, it
was not modal, getting in the way of typing.

The internal architecture of onCue consisted of

two main kinds of components: recognisers

and services (see Fig. 1) linked by a blackboard-like

infrastructure. The recognisers examined the clipboard contents

to see if they were a recognised type (postcode, name, table,

etc.). The services instead responded to data of particular types

(e.g. single word for dictionary, post code for mapping web

site) and were activated when clipboard contents were
recognised to be that type.

Around the same time as onCue's development, there were a

number of other data detector projects at Intel [Pandit, 1997],

Apple [Nardi, 1998] and Georgia Tech [Wood, 1997]. More

recently data detectors hit the headlines in disputes about

Microsoft SmartTags. However, there is another older

collection of work that started nearly 10 years earlier, again in

the HyperText community, where notions of external linkage

were important and Microcosm [Hall, 1997] developed at

Southampton pioneered automatic links. This used an index of

key terms attached to a particular content. When the user

viewed a document any key terms in the index became live

links. Note that most of the data detector’s work, including

onCue relied on largely syntactic/lexical matching using regular

expressions or other patterns whereas Microcosm was lexicon
based.

2.2 Snip!t
Snip!t is a web bookmarking tool, however unlike most web

bookmarks, the user can also select a portion (snip) of the page

content and then, using a bookmarklet, this selection is sent to

the Snip!t web application. The snip of the page is stored along

with the page url, title etc. and the user can sort the snip into
categories or share it with others using RSS feeds.

In addition, Snip!t has onCue-style features when the selected

text is a recognised type of data such as a date, post code,

person's name, etc., then actions are suggested. For example, in

Figure 2, the selected text "LA1 4YR" (1) is recognised as a

post code and this leads to suggested actions such as finding the
local BBC news for the area (2).

Snip!t uses a similar architecture of recognisers and services to

onCue, but these are server based rather than client based.

Consequently, Snip!t can use large lexicons hosted on the

server (e.g. comprehensive world gazetteer) alongside syntactic

rule matching. For example, the bible verse recogniser uses a

small lexicon of bible chapter names to trigger a syntactic rule
to match chapter and verse numbers.

Given in this case the post code is the selected text, Snip!it is

being 'intelligent', but not context sensitive. However, the

intention is to make Snip!t more context sensitive in the kinds

of types it recognises and the actions suggested. A good

example of this is the name detector. If one selects "Alan Dix",

then this is correctly recognised as a name, and internet

directory services are suggested. In addition a link is given to

lookup "Alan Dix" in IMDb … Snip!t does not know that Alan

Dix is not a movie star! For related reasons, a telephone

number detector has not yet been implemented – whilst it is

easy to recognise the right number of digits, it is unclear which

country the telephone number is in. The intention is to use

additional technology developed at aQtive that can classify the

Fig 1. onCue architecture

1

2

Fig 2. Snip!t in action – actions for a post code

kinds of material on a web page. So, if a name is on a page

with lots of words relating to films, then IMDb might be

suggested; but if it is on a page that looks like academic

computer science then DBLP lookup is more appropriate.

Similarly if a telephone number is on a page from an ".it"

domain name it is likely to be an Italian telephone number
whereas if it is ".uk" it is likely to be British.

This also works at the level of recognisers. Currently the bible

verse recogniser would think that "I gave John 3 apples"

included a reference to the bible chapter "John 3". Possibly this

would be distinguishable by natural language rules; however we

can perform simple context-related checks. If the page includes

references to other less ambiguous bible verses (e.g.,

Habakkuk) or the user frequently clicks on bible verse links

then the bible verse recogniser is more likely to be invoked for

the ambiguous "John 3". On the other hand, if the page does to

appear to be related to the bible and the user never looks at this

sort of material, then "John 3" is more likely to be just a
person's name that happens to be followed by a digit.

Currently Snip!t only deals with pre-programmed recognisers

and services. The intention is to enhance it with a means of

adding user-defined and user-shareable components, as was the

case with onCue. This has some interesting technical issues in

that the mechanism needs to be easy for naïve users, but

powerful enough for experts … and needs to protect both end
users and the central Snip!t server from malicious code!

The CREO system [Faaberg, 2006], a recent web-based data

detector leveraging semantic-web technology, allows the user to

train actions by example. The Snip!t system does not support

this type of interaction currently, and because of its largely

server-based architecture, the capability for this would be
limited without an associated browser plug-in.

2.3 OntoPIM
As part of the EU DELOS Network of Excellence, the TIM

project (Task-centered Information Management) is studying

the potential for users to store files, email, etc., indexed by

personal ontologies. Design and implementation of the

prototype tool OntoPIM [Katifori, 2005] is still in early stages
but several key issues are already apparent.

One problem is with initial storage and classification. It is hard

to save things in a simple hierarchical file system, so at first it

seems unlikely, however useful it might be later, for a user to

take the trouble to effectively store items in an organised

fashion. However, we believe that relatively simple matching

and automatic classification may help. For example, if a

document contains an email address then the system can check

if this is a known email and if so suggest associating the

document with the person. Alternatively, if the document is an

email from a person X and contains a telephone number, but no

other name, then it might suggest associating the email with the
relation "telephone number of person X".

One of the aims of ontology--based storage is to make task-

based interactions easier. For example, if Antonella has

recently received an email from Yannis, then the person

"Yannis Ioannidis" will have a high activation level in

Antonella's personal ontology. If subsequently Antonella

invokes a route finding service then the address of the person

"Yannis Ioannidis" (if known in the ontology) would be the
default in the relevant address entry field.

Suppose now that the email that Antonella received from

Yannis contained information about travelling to Athens, which

Antonella needs in order to participate in the next meeting of

the TIM project. By saving the email received from Yannis in

the OntoPIM system, the information in the email is also stored

in the Personal Ontology as the travel dates and the travel

destination. If she later wants to book a hotel for the meeting in

Athens, she needs to access the Personal Ontology to obtain this

information. Let us assume that Antonella has different

accommodation requirements, depending on whether she is

travelling for business or pleasure. The OntoPIM interaction

should be context-sensitive in the sense that the system should

recognize that the information Antonella is accessing comes

from an email concerning "business". This information is

actually contained in the system since the email was sent from

Yannis, who is a member of the TIM project, and copied to

other TIM members. Therefore, when providing Antonella with

the capability of booking a hotel in Athens via a Web Service,

OntoPIM should recommend only those hotels that fit the
appropriate requirements.

3. General Issues

3.1 Appropriate Intelligence
There is a great difference between the onCue “context" where

the system autonomously inspects the clipboard to suggest

actions and Snip!t where the user explicitly selects text. The

former is a kind of incidental interaction [Dix, 2002] where the

users intention is focused on one thing (copying text) and

'incidentally' some other system action occurs (onCue changes
its icons).

In all types of intelligent interfaces, but particularly those where

the system takes initiative within the interaction, it is important

that the system embodies principles of appropriate intelligence

[Dix, 2000] – that is embedding the intelligence within an

appropriate interaction framework. A key aspect of this is to

supplement the usual goal of intelligent interfaces "try getting

things right as often as possible and doing something good".

While it is good in demos to show that the system can give

some added-value it is not the thing that is most critical in
practice.

In fact systems can be fairly simple and indeed error prone and

furthermore deliver only marginal benefit, so long as they

follow the key tenet of appropriate intelligence … "when things

go wrong … don't mess up the user". For example the

Microsoft Office paper clip can say quite useful things when it

is right, but if it is wrong it has interrupted your typing and

spoilt your chain of thought. In contrast the Excel sum ()

button uses simple rules to choose a default range for the sum,

but if the chosen range is wrong one just selects the correct one

with little more effort than if the default had not been there. In

addition the user has explicitly invoked the sum, so is at a

natural point in the interaction to verify the selection and not be
interrupted.

onCue was designed with appropriate intelligence in mind.

This is why (a) it is not modal, so it does not interrupt one’s

current actions and (b) its icons fade in slowly, so it does not

distract one’s attention. When onCue's answers are not useful it
does not force itself upon you.

3.2 Types of context
Although somewhat overused, we can look at context using
who–what–where-style categories:

WHAT data/text in the user’s current focus. e.g. clipboard,
selected text.

WHERE immediate environment for example, if the

document to be saved in ontoPIM is an email, we

can use the sender, perhaps related emails with

similar subject lines as context. In the case of

Snip!it, as we have discussed, we can use the

country of origin or the topic of the web page to
disambiguate telephone numbers or names.

WHEN trace of recent activity of user as noted, with

ontoPIM if the last email read was from Tiziana and

the user selects an Internet telephone service, then

the telephone number would default to Tiziana's
number.

WHO profile/preferences of user and long-term activity

an example of the first, profile preferences, is when

a post code is selected in Snip!t, we may link to a

web-based route service to the selected post code

from the user's normal address. For the latter, long-

term activity, we should increase the likelihood of

"John 3" being a bible verse if the user has
previously clicked through bible-verse links.

Whilst these are all in the context of purely digital

environments, it is clear that similar categories are common in

ambient intelligence. For example, the user saying "hotter" is

likely to mean something different when in a shower than in a
kitchen (WHERE).

 Notably missing from the above list is why – the inferences we
draw from the other 4 Ws and how … the next section.

3.3 Architecture
The recogniser–service paradigm has proved very flexible; in

particular by separating these rather than having recognition

tied closely to a single action, it is easy to add additional actions

for an already existing recognised type. Again this is also true

for intelligent ubiquitous environments. Some proposed

solutions have involved directly learning stimulus–response

pairs, however having some form of more intelligible

intermediate representation helps explanation and allows

humans to fine tune the rules, thus making the rule set more

robust as technology changes (e.g. a new kind of temperature
sensor).

onCue recognisers were also recursive in the sense that the

output of one recogniser may trigger another. Similarly in

Snip!t, the syntactic bible verse is triggered by the lexicon

lookup recogniser for chapter names and abbreviations. This

seems a generally useful paradigm either with separated levels

of recognition (fairly common in ubicomp) or a flexible service
as in onCue.

Snip!t is currently restricted to one kind of data – web pages. In

contrast onCue worked across applications … but only through

clipboard use. The clipboard is usually the only truly

application independent source of data on a GUI platform.

Ideally onCue would have fitted more closely into applications,

but this is hard without per-application coding. Interestingly

Citrine, another recent application in the data-detector tradition,

is based purely on intelligent clipboard to clipboard

interactions, for exactly the same reasons [Stylos, 2004].

Similarly ubicomp environments need some level of

standardisation and discovery so context-sensitive interactions
can "listen in" to other devices.

Whilst onCue and ontoPIM are designed to operate on a single

machine and serve a single user, Snip!t is web-based and

designed to serve many users simultaneously. The current

implementation is monolithic, but in order to scale future

implementations we may need to separate out the recognition,

services and user interaction management into separate web

services. However, in order to have context sensitive

recognition, either the recognition service has to send a

relatively large number of context-independent suggestions for

the user-interaction component to filter based on context, or the

user interaction component has to send some representation of

current context with request for recognition. As well as

performance considerations, there are privacy and security

implications if contextual information is passed between web

services. These problems may be addressed by adding more

interaction between the services : eg. a request for recognition
might lead to a request for a specific type of context.

4. Summary
Our discussion of onCue, Snip!t and ontoPIM has allowed us to

suggest and explore several more general issues for context-

sensitive interaction. The issue of appropriate intelligence has

been noted previously, but is particularly critical when the

system is proactive or where it is costly to change 'intelligent'

defaults. The simple breakdown of types of context is already

proving useful in thinking about practical sources of useful

contextual information. Also the different elements have

different temporal properties, thus implying that activation-

based context may need several flavours of activation. Finally

we have described a few architectural issues that are critical for

this kind of digital environment, but which may also (as with

the other issues) be important for more physical ubicomp
applications.

5. Acknowledgements
Supported by the Information Society Technologies (IST)

Program of the European Commission as part of the DELOS

Network of Excellence on Digital Libraries (Contract G038-

507618). onCue was developed by the aQtive team, now in

diaspora, including Alan's co-directors Russell Beale and Andy

Wood. Snip!t was originally conceived following work by

Jason Marshall on bookmarking behaviour [Dix, 2003] and has

been developed with Fiona Dix and is hosted by Hiraeth Mixed

Media.

6. Questions for the workshop
As always any research raises more questions than it answers!
Two that are particularly 'hot' at present are:

(i) separation of concerns: how to represent context to make it

extensible and how to deal with potential distribution, when
context is not stored where it is used.

 (ii) reasoning: how to 'reason' over context (e.g. activation

models, fuzzy, etc.) and how to 'explain' contextual inferences
to users (or more generally make them comprehensible).

7. Bio and team
The first author, Alan Dix is Professor of Computing at

Lancaster University. He is author of one of the key texts in

human–computer interaction and has interests in diverse aspects

of HCI. His early interests in intelligent interfaces include

intelligent hypertext in the late 1980s and Query-by-Browsing,

automated database query inference, in the early 1990s. In

1998 with Russell Beale and Andy Wood, he founded a

company, aQtive, focused on intelligent internet access, which

sadly died in the dot.com collapse of 2000 The current work

is in the context of the TIM sub-project of DELOS and involves

a collaboration between the University of Rome La Sapienza,

University of Athens and Lancaster University. The aim of

TIM is to enable task-based interaction through an integrated

'filing system' organised using a personal ontology.

REFERENCES
[1] A. Dix, R. Beale and A. Wood (2000). Architectures to

make Simple Visualisations using Simple Systems.
Proceedings of. AVI2000, ACM Press, pp. 51–60.

[2] A. Dix (2002). beyond intention – pushing boundaries

with incidental interaction. Proceedings of Building

Bridges: Interdisciplinary Context-Sensitive Computing,

Glasgow University, 9 Sept 2002.

http://www.hcibook.com/alan/papers

/beyond-intention-2002/

[3] A. Faaborg and H. Lieberman (2006). A Goal-Oriented

Web Browser. Proceedings of CHI 2006. ACM Press. pp.
751–760

[4] V. Katifori, A. Poggi, M. Scannapieco, T. Catarci, and Y.

Ioannidis (2005). OntoPIM: how to rely on a personal

ontology for Personal Information Management. In Proc.
of the 1st Workshop on The Semantic Desktop.

[5] W. Hall (1997). The History of the Microcosm Project.

University of Southampton.

http://www.mmrg.ecs.soton.ac.uk/projects
/microcosm.html

[6] A. Dix and J. Marshall (2003). At the right time: when to

sort web history and bookmarks. In Volume 1 of

Proceedings of HCI International 2003. J. Jacko and C.

Stephandis (ed.). Lawrence Erlbaum Associates, 2003. pp.
758–762

[7] B. Nardi, J. Miller, and D. Wright (1998). Collaborative,

Programmable Intelligent Agents, Communications of the
ACM, March 1998. 41(3):96–104

[8] M. Pandit and S. Kalbag (1997). The selection recognition

agent: Instant access to relevant information and

operations. Proceedings of Intelligent User Interfaces '97.
ACM Press. pp. 47–52

[9] J. Stylos, B. Myers and A. Faulring (2004). Citrine:

providing intelligent copy-and-paste. Proceedings of
UIST'04. ACM Press. pp. 185–188

[10] A. Wood, A. Dey and G. Abowd (1997). CyberDesk:

Automated Integration of Desktop and Network Services.

Technical Note in the Proceedings of 1997 conference on

Human Factors in Computing Systems (CHI '97), pp. 552–
553.

