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Abstract

Interactive systems involve both events which occur at specific moments (e.g. keystrokes, mouse-clicks and
beeps) and more persistent status phenomena which can be observed at any time (e.g. the position of the mouse,
the image on the screen). Most formalisms used for interactive systems concentrate on one aspect or another
and may be asymmetric in their treatment of input and output. This paper classifies notations and models for
interface specification by the way they treat status and event phenomena in their input and output. We use this
to construct an model and associated notation which incorporates both. Specifying examples using this model
highlights important design issues which would be missed if either status or event phenomena were not properly
treated.

1 Introduction

Implementing and reasoning about any interactive system is a difficult and error-prone activity. Correct be-
haviour of a system from the user’s perspective is vital as any error will destroy confidence in the system. Given
the social fragility of groupware systems [21], even minor problems can be a disaster. To reason about the
sorts of properties expected of any interactive system, we need a language that most naturally expresses the
concepts of interest in that system. For example, in groupware systems, we need to describe multiple streams
of control, multiple views of shared objects and also the distributed nature of the computation. In this chapter,
we investigate the features of formal specification languages that promote their expressiveness for interactive
behaviour. Specifically, we are concerned with the distinction between event and status phenomena at the user
interface and how that distinction is useful for categorising specification approaches.

Status–Event Dichotomy

The dichotomy between event and status phenomena has been pointed out by the authors previously in a shorter
version of this paper [3] and other works [14, 12]. Events are atomic, non-persistent occurrences in the world,
that is, we sense that they happen at a particular point in time. Status refers to things that persist and we observe
in the world, that is, they have a measurable value at any moment. A mouse click, or a beep indicating the
arrival of a mail message are examples of events, while the position of the mouse cursor on the display or the
position of the flag on the mailbox icon are examples of status information. There is a link between events and
status; for example, the beep signalling the arrival of a mail message will often be associated to a change in the
status of the position of the mailbox flag. As the mouse cursor moves across the boundary of a window, that
window can be activated as the focus for further user input. As these examples show, events can trigger status
changes and changes in status can trigger events.
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In fact, the relationship is slightly more complicated. The idea of an event depends somewhat on viewpoint
and timescale. If you consider the activities of a day, the ringing of your alarm in the morning is an event. If
instead, you think of the act of getting up in the morning, the alarm is a status (ringing or not) and the critical
events are when it starts to ring and when you press the button to stop it. The situation is similar in computer
systems. Consider clicking a mouse button. At a physical level there are two events: down and up (or perhaps
even more considering the de-bounce circuitry). From the user’s point of view she simply clicks the mouse –
a single event. Depending on the window manager and toolkit used, the program may see one ‘mouse click’
event or separate ‘mouse-down’ and ‘mouse-up’ events. This is an issue which we have explored in greater
detail in earlier papers [13, 14]. However, the critical issue for this paper is that a user interface specification
should first reflect the events and status as they are perceived by the user rather than those of the implementation
of the system. The proper place to move towards the implementation perspective is during refinement, an issue
we return to at the end of the paper.

Whereas this paper focuses principally on the formal aspects of the status–event distinction, perhaps the
most significant feature of status–event analysis is that it forms a conceptual and analytic bridge between formal
and informal understanding of problems. In particular, status–event timelines a semi-formal diagrammatic
technique, introduced first to describe the behaviour of electronic mail receipt has also been successfully used
to determine the appropriate auditory feedback for on-screen buttons. This was particularly impressive as the
analysis showed (before experimentation) that the initial design idea would not solve the target problems, but
also suggested an alternative design which future experiment confirmed to be effective [15, 6].

Expressing Status–Event Phenomena

While this status/event distinction may seem obvious, we might ask why it is useful for describing interface
behaviour. Our operating assumption is that the distinction between status and event is natural in our under-
standing of interface behaviour. It follows, therefore, that the languages we use to specify an interface should
reflect how we naturally think of them. That is not to say it is impossible to describe an interface without
access to both status and event. On the contrary, most modern window-based interfaces are event-driven, which
means that, at the lowest level, any and all interface behaviour must be described in terms of events. We can
refer to the grain, or language bias, for such event-driven systems. The grain of an interface language refers
to its natural tendency toward describing interface behaviour. As we have demonstrated above, some interface
phenomena are more easily described in terms of events and some more easily in terms of status. Opening
a window by clicking on an icon is easily described by a selection event usually linked to some mouse click
whereas movement of the mouse cursor is easiest to think of as a time-varying status input. Some behaviour is
a combination of both status and event. For example, selection of an item in a pull-down menu involves event
input to reveal the menu, status input to wander up and down the menu and possibly reveal submenus, and event
input to select an item from the menu.

If a language restricts expressions to events only, then status phenomena will be difficult, if not impossible,
to express. When the natural expression of some interface behaviour goes against the grain of a specification
language, then at least one of three things will occur:

• it will be specified incorrectly;

• it will be specified correctly but in a way that is difficult for readers of the specification to understand; or

• its specification will be ignored.

All three of these options are unfavourable. In this paper, we investigate the status/event biases of various
specification languages used to describe interactive systems. We find that, despite the frequent occurrence of
status/event phenomena, formal specification notations for interactive systems do not deal with both adequately.
Notations have either an event only or status only grain.

This paper argues the advantages of using a formal model that is specifically designed to reflect both
status and event behaviour within the interface. There are two main uses of such a formalism—as a high-level
requirements language and as a low-level language for constructing widgets based on their intended behaviour.
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In order to demonstrate these issues we build a formal model which can describe all kinds of status/event
properties. However, the aim is not to sell the particular model and notation, but the general principal that both
phenomena must be describable within an effective interface specification notation.

Structure

In the next section, we look at various models which have been used for interface specification. We show how
these fail to uniformly treat status and event behaviour. Then in section 3, we use these simpler models as a
guide to build up to the more complete model, which is an extension to the agent model developed by Abowd
[2]. This presents both the model and a concrete syntax for the model.. Finally in sections 4 and 5 we look
at examples of the use of the new model to describe single and multi-user interfaces. This exercise exposes
several design problems which can be easily overlooked when using purely event based approaches.

2 Existing formal models

In this section we review various formal models and notations in the light of the status/event distinction. The
models are characterised by which combinations of status/event input/output they support. Ignoring the case
of a model with no input or output, there are 15 different combinations although not all this space is populated
by existing systems.

In order to give a unified treatment, we take an agent-based perspective. Some interface models treat the
entire system as a single entity, in which case this is the sole agent. Other models treat the system as an
interacting network of agents. In addition, the user may be regarded as an agent. In each case, the terms input
and output are used with respect to the agent being modelled.

Specification notations are used to characterise behaviour over time, and so a central feature of these models
is how they characterise changes. This is often represented in terms of the changes to the states of agents. We
take this perspective throughout, although it should be noted that for some notations the state is not explicit.
We use the word state to refer to the internal information about the agent, whereas the status output is available
outside the agent being modelled. It may be the case that the status output (where it exists) is some portion of
the internal state, but this is not assumed.

There are three (non-trivial) uniform combinations where the input and output are of the same kind:

• event input – event output

• status input – status output

• event & status input – event & status output

Such combinations are, of course, particularly suitable for composition. That is a system can be built out of
interacting agents where the outputs of some agents become the inputs of others. The asymmetric models tend
to be where the system is regarded as a single agent and the asymmetry reflects the differences in the way the
model treats the user’s input to the system and the system’s responses. However, this is not universally the case,
and we will see that the Interactor model [18] is compositional but asymmetric (event input – event and status
output).

Event Input – no Output

Perhaps the simplest model we can appeal to is one in which the state transitions are triggered by events from
the environment, but where there is no output at all. At first this seems to be a silly and rather useless category.
However, where the intention is not to capture the entire behaviour of a system it is quite reasonable. Indeed,
various forms of grammars have long been used as a form of dialogue description, for example, Reisner’s use
of BNF [32] and Task Action Grammar (TAG) [33]. These grammars describe the possible sequences of user
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input, but are often silent concerning system responses. Similarly some uses of State Transition Networks
(STNs) deal only with the transitions between states caused by user inputs [25].

Such systems can be described by a simple state transition function:

new state = doit( old state, in event )

As we have already mentioned grammars do not have an explicit state, but for purposes of comparison, they
can be regarded as possessing an implicit state. Take for example the following BNF description of a mouse:

mouseup ::= Move mouseup
| Press mousedown

mousedown ::= Move mousedown
| Release mouseup

In this case, the non-terminals ‘mouseup’ and ‘mousedown’ can act as the states of the system. In a more
complicated example more states may be required, but a (possibly infinite) state based representation is always
possible (indeed many parsers work in precisely this fashion).

Event Input – Event Output

In a stimulus-response system, an input event leads to some state transition which results in output events. This
is represented diagrammatically in Figure 1 and can be modelled using a modified state-transition function:

new state, out event set = doit( old state, in event )

Many User Interface Management Systems [31] and User Interface Development Environments [19] use event-
response systems or event based production-rules as their dialogue control component. In addition, most actual
window managers are based on event loops, in which case, the output events are usually describing changes in
the interface: update a window, create a dialogue box etc. Notice how the outputs to the window manager are
principally status, even though they are described using events.

Figure 1: Event-in — Event-out

One of the important features of this class of notations is that they can use communication as a means of
composing objects. The output events (or messages) of one object become inputs to some other objects in the
system, which, in turn, trigger state transitions and further events. Thus a system can be described as a network
of communicating agents. It is when agents are composed that the differences between the interpretation of
events in different formalisms become apparent. In Agha’s Actors model [4], communication is asynchronous.
So that there may be an arbitrary delay between the sending of a message and its receipt. Furthermore, Actors
does not even guarantee that the ordering of messages sent by one agent are preserved when received by
another. In contrast, the process algebras, such as CSP (Communicating Sequential Processes [24]) and CCS
(Calculus of Communicating Systems [26]), mainly adopt a synchronous model of communication and in CSP
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the distinction between input events and output events is somewhat blurred when there is no explicit value
passing. Also the bare process algebras, like grammars, leave the state implicit describing only the ordering of
events.

As many interface issues are difficult to express without some model of state, some researchers [5, 1, 2, 35]
have extended a process algebra with a state-based notation in order to make the state of the object more
explicit in the specification. Since these notations adopted a CSP model for the process algebra, they all assume
synchronous communication between objects. Also LOTOS has been used in the CNUCE Interactors model
[29, 30] as it includes both a CCS-based process algebra to specify event order and an algebraic notation
ACT-ONE to specify state values.

Many forms of state transition networks fall into this category too. Some annotate the arcs with the system’s
feedback, whereas others may add arcs which can indicate both input events and output events, as is done in
Harel statecharts [22]. Likewise, where Petri nets have been adopted and extended for interface specification
[], their event based is still evident.

As one would expect, the description of status-oriented behaviour is cumbersome using this class of nota-
tions. Look, for example, at the behaviour of a mouse dragging a box using CSP:

NoDrag = mouseDown {while over a box} → Dragging
[] mouseMove(x,y) → NoDrag

Dragging = mouseUp → NoDrag
mouseMove(x,y) → moveBox(x,y) → Dragging

Notice how the connection between the mouse’s position and that of the box has to be maintained by a sequence
of little moves. Also notice the side condition ‘while over a box’. This is not part of CSP, but has been included
to capture the dependency on the mouse and box position. This side condition would be extremely difficult to
express fully in CSP, or indeed even a notation where local state has been added as it relies on the internal state
of two components of the system. Consider how much more difficult this would be if one wished to describe
the way the wastebin highlights on an Apple Macintosh when an icon is dragged over it. We would need to
discuss three status phenomena: the mouse position, the icon position and the wastebasket position.

When several status phenomena are linked, not only is an event description cumbersome, it also encourages
over commitment. Consider the dragging of two selected items over a desktop. We might write:

Dragging = mouseUp → NoDrag
[] mouseMove(x,y) → moveObj1(x,y)
[] → moveObj2(x,y) → Dragging

But, this says that the second object always lags behind the first. An implementation which moved the second
first would be ‘wrong’ according to this specification. This bias can be overcome by using parallelism in the
description, but all one really wants to say is that they are both at the same position as the mouse.

Status Input – Status Output

Dragging, the relationship between the mouse position and the position of the box, is a status–status mapping,
and can be captured quite easily using standard software engineering notations, such as Z, VDM, or the algebraic
specification methods. We can write something like:

dragging(box) ⇒ box.centre = mouse.position

In fact, the most complicated thing about this expression is the guard. It is not always true that the box is at the
mouse position, only when it is being dragged. Of course, this leaves one with the awkward question of what
the position is when the box is not being dragged! Unfortunately, this is rather more difficult as it is ‘the last
position it was dragged to’. To express this requires either an explicit model of time, or some event description.

Despite this shortcoming, pure status–status mappings can be very useful for expressing invariants – things
which must always be true of a system. In particular, one can express the relationship between the display of
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a system and its internal state. For example, in a word-processor it must always be the case that the screen
display reflects faithfully the appropriate part of the document being edited. We can write this in Z:

Display
document : N × N �→ CHAR
screen : N × N �→ CHAR
lines, columns : N [size of screen]
offset : N × N [offset of screen image in document]

dom screen = (1..lines) × (1..columns)

∀(l, c) : dom screen •
(l, c) + offset ∈ dom document ⇒

screen(l, c) = document((l, c) + offset)
(l, c) + offset 
∈ dom document ⇒ screen(l, c) = space

Try writing that in CSP!
Notice also how easy it would be to add multiple displays at different offsets and hence begin to describe

a group editor. Actually maintaining such an invariant between displays on machines spread over a network
will, of course, be very difficult, but the specification can at least help one to see the aim of the system.

Event Input – Status Output

If one considers older computer systems, one notices that the input/output modalities are asymmetric. The
dominant input device was the keyboard (event) whereas the output was the CRT display (status). It is not
surprising that the PIE model [11, 12], an early formal model of interaction, inherited this bias (Figure 2).

Figure 2: PIE model

The PIE model regards the inputs to be a sequence of user commands (for historic reasons the sequence of
commands is called P). The command trace is interpreted by the system to give a current state (from the set E),
from which the current display and the ultimate result of the system can be obtained. The PIE model can be
regarded in terms of a state transition function and status–status mappings relating the current state and display.

state transition
new state = doit(old state, command)

( I = doit� )

status–status map
current display = disp(state)
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If one regards mouse movement as a sequence of ‘move’ commands, this is a very general model of
interaction. However, it is, our thesis that this would be an unnatural interpretation of mouse movement.

In addition to this special purpose model, the event-in/status-out representation has been used as the basis
of many specifications of interactive systems using conventional notations (e.g., [34]). This may be achieved
using functions to represent state update:

mouseDown(state, pos) = state′

where inside(pos, box) ⇒ state′.dragging = true
. . .

Or in the Z notation, ‘delta’ schemas may be used:

MouseDown
∆State
pos? : N × N

dragging′ = (pos? ∈ box)
. . .

In both cases, the binding between function/schema names and the events they denote is informal.

Event Input – Event & Status Output

As we saw, the dominant form of output in interactive systems is status, the display, but an event-in/status-
out model, like the PIE, is not compositional – one can talk about the system as a whole, but not about its
construction. Duke and Harrison’s Interactors [18] add a status output to an event based notation in order
to be able to deal with display output. Similarly, Abowd’s Agents [1, 2] have been augmented by templates
describing those portions of the internal state which are available as output.

Figure 3: Event-in — Event & Status-out

Both these notations can be described using a state transition similar to that for the event-in/event-out
notations augmented with a mapping from the state to the status output:

new state, out event set = doit( old state, in event )
status output = render( state )

Note the equation for ‘render’ has been written as a function of simply ‘state’. This is to emphasise it is a
relationship that always holds, not just at state transitions. In Duke and Harrison’s work this is indicated by
simply saying which state components are visible.
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The resulting agents can communicate using events, just as with event-response systems. However, the
status output is not available to other agents and is only for the purpose of describing the final user display.

This has two consequences. First, mouse input is still regarded as a sequence of move events. Second, one
cannot easily layer a description where the internal layers have status output. For example, one might describe
a display editor with the output being the screen display, then later want to use that description within a larger
system where the display of the editor was just one window on a larger screen. In order to achieve this with
an event-in/event&status-out system, one must describe the inner part of the system purely in terms of events.
Only the very outermost layer has any status output at all.

Event & Status Input – Status Output

Probably the most serious problem with the PIE model for dealing with graphical systems was its inability to
deal neatly with status input – in particular the mouse position. Because of this a variant of the PIE model was
designed which could include mouse position (or other status) input [12].

In the modified PIE model, the state transition function depends not only on the current state and the
command (the event which caused the transition) but also on the current mouse position (the status input):

new state = doit(old state, command, pos)

This means that it is easy to express conditions such as ‘mouse is within the box’ as they translate into a predicate
about the current position and the current system state. However, an additional mechanism is needed to deal
with dragging, the display function must also depend on the current mouse position:

current display = disp(state, pos)

That is, output status is a function of state and input status.
This display function is an example of interstitial behaviour, as it describes what happens to the display

between commands. Indeed, a lot of the dynamic behaviour of a graphical system is captured in this function.
In fact, this is only a limited form of interstitial behaviour as the status input only has a permanent effect

when an event occurs. This behaviour has been termed trajectory independent. A drawing package requires
a more complicated form of interstitial behaviour as the path that the mouse takes between events must be
recorded during freehand drawing. The different forms of interstitial behaviour is a fascinating topic in itself
which is partially investigated in [12]1, but initially we look only at the simple form of behaviour above.

Summary

We have now looked at six classes of model. Table 1 summarises the models and their capabilities. Ideally, we
would like a model which captures all kinds of behaviour.

Before proposing such a model it is worth reiterating why it is necessary. Proponents of both event and
status based approaches can justifiably argue that they can encompass all types of behaviour. For example, it is
possible to model a status value in a process algebra:

StatusVar(x) = set(v) → StatusVar(v)
[] get(x) → StatusVar(x)

Indeed, this is similar how the user’s display is handled in the CNUCE Interactors model [29, 30]. However,
in their model an extra triggering event is added before their equivalent of the ‘get(x)’ event.

Similarly, it is possible to regard an event, such as the pressing of a mouse button as simply the change in
a status – indeed, polling devices behave exactly like that.

The important thing is that, although both methods ‘work’ and indeed may even be the way the phenomena
is implemented, they do not naturally represent the phenomena. As we discussed in the introduction, this leads
to a specification which is constantly trying to go against the grain of the notation and thus almost certainly to
one which is wrong.

1But not using the word interstitial!
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Event-Out Event-In Status-Out Status-In
grammar

√

stimulus response
√ √

invariant in Z
√ √

PIE model
√ √

Z ∆ schema
√ √

?
interactors

√ √ √

modified PIE
√ √ √

* Ideal model *
√ √ √ √

Table 1: Summary of models

Figure 4: New model: Event & Status-in — Event & Status-out
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3 Combining status and events – a new model

The final stage of our Odyssey, finding a model which fully encompasses both event and status behaviour is quite
straightforward. We can simply take the relevant parts of the models in the preceding section and plug them
together. Probably the most critical part is the interstitial behaviour inherited from the modified PIE model.
To the modified PIE model’s state transition function, we simply add event outputs as found in interactors or
simple event-response systems:

state transition (action)
new state, out event set = doit(old state, in event, in status)

The interstitial behaviour is then a generalisation of the modified PIE’s display function.

interstice (between actions)
out status = render(state, in status)

Remember that this represents the relationship which always hold true between actions. It can be used to
capture continuous behaviour, for example, that the position of a slider follows that of the mouse, or (continuously
true) discrete behaviour, for example, that the menu bar is highlighted when the option key is depressed.

Concrete notation

In order to deal with examples we need a concrete notation. However, we hold this notation lightly as we
believe that it is the concepts which are important, not the particular notation. The notation used is in fact a
little repetitive, and is really aimed at static configurations of agents. However, it serves to illustrate the utility
of our approach.

For each agent, we list the names of the input events and the output events. We also list the names and types
of each output event. For example, for a text editing agent this might look like:

EDITOR:
state: document : Doc pos �→ Char

cursor : Doc pos
in-events: keystrokes = { a, b, c, . . . }

mouse up
mouse down
mouse click – for selecting text

in-status: offset x : [0 . . . 1] – from scroll-bar
offset y : [0 . . . 1]
mouse x : nat – from mouse
mouse y : nat

out-events: beep – error signal
out-status: screen : Scr pos → Char

scr cursor : Scr pos

The types Doc pos and Scr pos are line and column positions in the document and screen respectively.
Whereas the former ranges over N × N, the latter only ranges over the valid screen coordinates.

We will also refer to some additional variables: nos lines, nos cols, winpos, charht and charwid, which
are constant for the purpose of this example.

Not every agent has every type of input and output and indeed the above example has been somewhat
contrived to get all kinds of event in one example. In contrast, the mouse agent has no inputs or state, because
it directly represents the user’s input to the system:
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MOUSE:
state: none
in-events: none
in-status: none
out-events: mouse up

mouse down
mouse click

out-status: mouse x : nat
mouse y : nat

The agent must then describe the possible state transitions. For each input event, there is a clause describing
the changes to the state and also the output events which are raised. For example, the mouse click event for the
editor might be as follows:

EDITOR – state transitions

on mouse click:
if (mouse x,mouse y) over document window
and mouse to doc(mouse x,mouse y) ∈ dom document

cursor′ = mouse to doc(mouse x,mouse y)
document′ = document

if (mouse x,mouse y) over document window
and mouse to doc(mouse x,mouse y) 
∈ dom document

raise beep

The function mouse to doc converts the mouse coordinates into a character position in the text. If this is
over a valid character position in the document it is selected, otherwise the editor beeps.2

mouse to doc : Scr pos → Doc pos

mouse to doc(x, y) = (line, col)
where line = offset y × nos lines + y−winpos.y

charht
col = offset x × nos cols + x−winpos.x

charwid

Finally, we must describe the interstitial behaviour. This defines the output status in terms of the input
status and state of the agent:

EDITOR – interstitial behaviour

screen(x, y) = document(x + offset x, y + offset y)
if (x + offset x, y + offset y) ∈ dom document

= space otherwise

Notice that this involves both the state (document) and some input status (the offsets) in the calculation of
the output status.

2A real editor would probably select the nearest legal position, but we want to demonstrate an event output!
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More complex forms of interstitial behaviour

Although the interstitial behaviour defined above is sufficient for many purposes, more complex behaviour is
possible. We have already mentioned the way that a drawing package may have trajectory dependent behaviour
whilst the user is freehand drawing. To model this, the state transition and interstitial behaviour require not
just the current input status, but the complete history of input status since the last event. If Interval is the set of
possible intervals over some time domain, the semantic functions will be something like:

state transition
new state, out event set = doit(old state, in event, in history)

interstice
out status = render(state, in history)

The input history is a time series of input status over some interval:

∃ int ∈ Interval s.t. in history ∈ (int → In Status)

In the drawing example, the actual appearance depends only on the pixels over which the mouse passed
(ran in history). However, more complex examples may require the complete time-series. For instance, if one
uses continuous time, one is able to describe so called ‘hybrid systems’ where discrete (digital) behaviour is
mixed with continuous (analogue) [20]. This is used to model control of physical processes where the control
device is digital, but the physical process is continuous. In such cases the interstitial behaviour is usually limited
to differential or integral equations. These can be useful in interface specification also. For example, if an
analogue joystick were used as an input device, then the position of the cursor on the screen would move with
velocity determined by the joystick. This could be expressed:

posx =

∫
joyx

The integral can be thought of as just one special form of function over the status input history.
In fact, the various notations developed in the study of hybrid systems are closest to the concerns of this

paper. For example, the Extended Duration Calculus [8] has mechanisms to deal with continuous values and
differential equations during interstitial periods as well the ability to reason about values of predicates over
intervals inherited from the Duration Calculus itself [7]. The Duration Calculus also has the notion of an
integral of a predicate, which is another kind of interstitial operator. It is effectively the normal integral of the
characteristic function of the predicate and yields the amount of time the predicate is true during the interval.

Sometimes, the only important thing is when the status input crosses significant barriers. That is when there
is a status-change event. This can be dealt with as a form of trajectory dependent interstitial behaviour, but if
the status change is perceived as being an event for the user, it is better to represent it as such. One way of
representing this is by allowing predicates as part of the state transition behaviour, not as guards, but as event
generators. For example, in the case of the editor agent we might want to add a condition of the form:

on ↑ (cursor 
∈ screen window) :
move offset to re-center cursor within window

The notation ↑ P is read as “when the predicate P becomes true”. Similarly one can write ↓ P – “when the
predicate P becomes false”. The event would occur, for instance, when the user was typing and the cursor got
to the end of the screen. Note that this condition would often be combined with additional guards. If the user
explicitly scrolls to the new location using the scroll bar then the corrective action would not be required.

This up-arrow/down-arrow notation is used in several formalisms to refer to the set of times when a predicate
becomes true/false. For example, Moffet et al. use it as part of a requirements capture model [27].

Another form of event, which can be regarded as a special form of status-change event, is a timed event.
Again, one could introduce special syntax for this.
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These different forms of interstitial behaviour are all useful in different circumstances, but, we will use
the simpler, trajectory independent, form in the rest of this paper. Our aim is to show that mixed status/event
descriptions are necessary to adequately describe the user interface, and even restricting ourselves to this simple
form we will find important issues are raised.

4 Example – slider control

We now consider the complete specification of a slider control as used in many graphical user interfaces. The
appearance of the slider is shown in Figure 5. The user has two ways of manipulating the slider control.

Figure 5: Slider control

• It may be dragged by the mouse. While the mouse is held down over the scroll-bar, the slider’s handle
moves up and down with the mouse. If the mouse is released within the scroll area, the handle moves to
the relevant position. If however the mouse is released outside the scroll area, the slider snaps back to
its original position.

• If the mouse is clicked over the scroll area, the handle moves to that position.

We do not consider forms of jump scrolling, such as screen-by-screen or line-by-line scrolling. These would
make the description longer, but not fundamentally more complicated. Indeed, the necessary information is
another example of status input, coming from the application using the scroll-bar. That is, the transformation
of status is a two-way affair! Similarly, many scroll-bars show the position of the handle as an outline whilst
dragging, we will not put this in the initial version.

A more difficult issue, is the fact that a real scroll-bar has mixed control. That is, the position of the scrolling
may be changed both by manipulating the scroll-bar directly, but also by typing in the document which may
move the window indirectly. We will return to this issue later in Section 5.

We will consider the components of the slider specification in the same order as those of the editor. However,
this specification will be complete, albeit simplified.

State and Signature

First, we look at the state and inputs and outputs of the slider:

13



    

SLIDER:
state: save val : [0 . . . 1]

dragging : bool
delta: N

in-events: mouse up, mouse down, mouse click
in-status: mouse x,mouse y
out-events: none – could have change event
out-status: slider val : [0 . . . 1]

save val – from state
dragging

The inputs all come from the MOUSE agent. The state variable ‘save val’ is used to hold the original
position of the slider whilst it is being dragged and also to record the current position of the slider between
dragging. The dragging variable records when the user is engaged in dragging. Note that this cannot be inferred
from the state of the mouse buttons and the position of the mouse as the user may Note that both these state
variable are also made directly available as output status. The last component of the state is used to record how
far the mouse was from the centre of the handle when dragging began.

The three output status can be used by the application to set its offset in the document, and by the display
manager to position the handle on the screen. If an outline of the handle is dragged around, the mapping
between the status outputs and the screen display would be as follows:

graphic where when
handle save val always
outline slider val dragging = true

not displayed dragging = false

Alternatively, one might wish to move the actual handle around in which case the handle would always be at
slider val. Note that these are simply two options for the status–status mapping between the abstract slider
state and the display. Similarly, we can choose whether to attach the offset in the document to save val – in
which case the text would only scroll when dragging was complete, or to slider val when the text would scroll
up and down as the user moves the mouse.

4.1 State transitions

We next look at the behaviour of the slider when events occur. Because we are able to model interstitial
behaviour, we do not consider mouse movement an event. So, we only need to examine the effect of mouse
button events.

SLIDER – state transitions

on mouse down: ( start to drag )
if (mouse x,mouse y) over slider handle

dragging′ = true
save val′ = save val
delta′ = mouse y − calc pos(save val)

on mouse up: ( finish drag )
dragging′ = false
if dragging and (mouse x,mouse y) over slider background

save val′ = calc val(mouse y)
else save val′ = save val
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on mouse click: ( jump scroll )
dragging′ = false
if (mouse x,mouse y) over slider background

save val′ = calc val(mouse y)
else save val′ = save val

The functions calc val and calc pos translate back and forth between slider values (between 0 and 1) and
screen positions. They are not inverses of one another, as one of them uses delta to account for the mouse not
‘holding’ the handle in the middle.

calc pos : [0 . . . 1] → N

calc val : N → [0 . . . 1]
calc pos(v) = v × (y hi − y lo) + y lo
calc val(y) = y−delta−y lo

y hi−y lo

Note how each transition depends both on the internal state of the slider agent and the status input (mouse
position). In addition, the state variables delta and dragging depend in quite a complicated way on the history
of user actions. It would be quite hard to describe this without using explicit state.

Interstice

Finally, we look at the interstitial behaviour of the slider. This is very important as it used to generate the
constant feedback which is obviously necessary for the usability of the control. There is no need to specify
the values of the dragging and save val output status as these are taken directly from the corresponding state
variables. Only slider val needs to be specified:

SLIDER – interstitial behaviour

slider val = calc val(mouse y)
when dragging and

(mouse x,mouse y) over slider background
= save val otherwise

The critical thing to note is that this depends on both the status input (mouse position) and the current state
(dragging and delta). We can not simplify the formula to:

slider val = calc val(mouse y)when mouse over the slider background

Consider what would happen if the user depressed the mouse outside the slider (say over the screen background)
and then dragged the mouse over the slider. With the simpler formula, the slider would begin to operate, whereas
we only want it to follow the mouse position when the mouse was originally depressed over the slider handle.
This dependence on history is captured by the state variable dragging.

We need everything

The example, was carefully chosen so as to demonstrate that all the kinds of mappings we have discussed are
indeed necessary. The state transitions depended on what input event had occurred, the current state and the
status input. Also the status output was a function of both the state and the status input. Furthermore, without
the status output and the associated interstitial behaviour, we would not have been able to capture the user
feedback.
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5 Mixed control and groupware

As we noted earlier, the description of the scroll-bar is a little unrealistic as it assumes that user interaction
with the widget is the only way the scroll position will change. This is probably acceptable for a drawing
package, where the user must explicitly move the window when the point of interest is off screen However, in
a word-processor one expects that the window will move as one types. For example, imagine you have a 4000
word document with the scroll window and cursor at the beginning. After a few hours you have typed another
4000 words, but not explicitly moved the scroll-bar. You would expect the window to now be in the middle of
the document, not still at the beginning!

In fact, while you are typing, the scroll-bar effectively moves with virtually every character typed (although
it will only perceptible move when the change exceeds a pixel). This is because the scroll-bar represents the
proportion of the way the window is into the document, whereas normally the beginning of the window is kept
fixed. Thus in a small document, the scroll-bar will move slightly upwards as the user types. The more dramatic
change occurs when the typing would take the insertion point of the bottom of the screen, at which point the
screen usually scrolls to a new position, often centring the insertion point in the screen, or moving it to the top
line. This will move the scroll-bar downwards. That is, as you type the scroll-bar’s position takes a saw-tooth
path jiggling a little back and then jumping forward as it gradually makes it’s way downwards.

In a single-user interface, the two modes of interaction (typing and scroll-bar dragging) rarely happen
concurrently, and so some ad hoc fix can be applied when they do. For example, in the Macintosh interface,
typing is buffered while the scroll-bar is being manipulated.

Modified slider

In order to incorporate this sort of behaviour, the slider agent needs to be changed somewhat, either adding
events (from the application) to update the slider position, or making the slider position an input status. If the
second option were adopted, the slider would emit a ‘changed’ event when the user finished scrolling and the
application would be responsible for moving the actual offset to match the one the user set. In this case, the
handle is actually a display device whereas the outlined box is the real input.

The new signature of the slider would be as follows:

SHARED SLIDER:
state: dragging : bool

delta: N
in-events: mouse up, mouse down, mouse click
in-status: mouse x,mouse y

save val : [0 . . . 1]
out-events: changed(v : [0 . . . 1])
out-status: slider val : [0 . . . 1]

save val – from input status
dragging – from input state

Obviously all the places in the specification where save val is assigned a value would need to be removed
and in addition, we need to generate changed events at the appropriate places. For example, the state transition
for the mouse up event would become:

on mouse up: ( finish drag )
dragging′ = false
if dragging and (mouse x,mouse y)over slider background
raise changed(calc val(mouse y))
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The changed event has been given a parameter value, this could also have been picked up from an appropriate
output status (slider val). However, the value is directly about the event so it seems more natural to include it
with the event.

Note that, the changes introduced are not an implementation fix, but reflect a different conceptual model
of the slider’s operation. The fact that the original (and deliberately simplified) model could not describe the
situation pushed us to think again and more clearly about the role of the slider in the interaction.

If the slider had been described entirely in terms of events (as would happen in a typical window manager),
then the above problem would never have surfaced. There would have been an ad hoc solution which would
have emerged from the particular event orders, but there would have been no need to explicitly design this
behaviour. It is not clear whether the behaviour on a particular platform (for example the buffering on the
Macintosh) is due to chance or design. However, it is clear that a formalism ought to force interface developers
to face these critical design decisions.

Groupware problems

Ad hoc methods may work in a single-user application, but are unlikely to be satisfactory in a multi-user
interface where one user may be typing whilst another is scrolling. In a tightly coupled system (with shared
cursors and shared scroll position), one could simply lock the text whilst a slider is being dragged. The other
users’ typing could then be buffered just like the single-user case. However, in loosely coupled interaction,
where the users may be typing in different parts of the document this would be unacceptable – periodically,
and inexplicably, each user would find that the system would freeze momentarily (while the other user was
scrolling), and then, just as suddenly, would spit out their buffered typing! On the contrary, users of a loosely
coupled system expect to be able to continue typing whilst another user is scrolling.

This really forces the issue about where the control of the text scroll position lies. If each user has a
different scroll position, then we need to consider the users viewport into the document as a separate agent.
The document itself is conceptually shared by all the users. It has even more complicated control issues!

If we use the second slider definition, with the value as status input, it is easy to specify sensible shared
activity. If the user or any other user types, then the slider position will move accordingly. For example, if
someone is typing above a user’s window then that user’s slider will move down (as the offset into the text
increases). When the user grabs the slider with the mouse, the outline of the handle is dragged with the mouse.
However, the handle itself can still move up or down as other users type.

Figure 6 shows a typical scenario. Alison and Brian are editing a document together. The figure shows
Alison’s slider and window onto the shared text. The text just above and below Alison’s window is also shown
and Brian’s insertion point is in the part of the document above Alison’s window. Alison grabs the slider’s
handle with her mouse and starts to drag the outline handle upwards. While she is positioning the slider Brian
types. Because there is now more text above Alison’s window, the handle of her slider (but not the outline)
moves downwards. Finally, Alison releases her mouse button and her slider handle and window move to the
new position.

We cannot put the full definition of all the agents involved in this here, but the basic architecture is shown
in Figure 7. The straight arrows denote status links and the jagged arrows are events. Each user has their
own viewport and associated slider. The document is a shared agent and each user’s window is derived by a
status–status mapping from the current state of the document and the current offset for that user. Of course, this
only represents one possible shared editor configuration: each user could be allowed more than one window
into the document, or we could explicitly model a replicated document (especially as we refine the specification
into an implementable system).

Other shared values and dynamic pointers

In fact, the slider is a simple example of the general problem of shared values with mixed control. The shared
document is another, more complicated example. The appropriate use of status–status mappings simplifies the
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display part of the system and in so doing allows us to focus on the necessarily complex issues of shared update.
In the example in Figure 6, Brian inserts text above Alison’s window. This has two effects:

content – The contents of the document change and so any window showing that portion of the text ought to
reflect the change.

position – As Brian types the position of Alison’s window and insertion point move correspondingly.

The first of these is described easily by the status–status mappings so we concentrate on the latter. The update
of pointers into sequential text is a general problem which arises in several contexts and has been addressed
previously using the concept of dynamic pointers [12, 16]. Dynamic pointers are an area of study in their own
right, so only a flavour can be given here. Basically, any object which can be updated should be able to support
pointers which ‘move’ as the object changes, so that they always point to the ‘same’ (semantic) position. In
text with insertion and deletion operations these mean that pointers after the insertion point are automatically
shifted forward or backward respectively.

In practice, for a shared editor, this means one of the following:

• The centralised document agent ‘knows’ about all the users of the document and owns their insertion
points and window offsets. That is, virtually all of the functionality is centralised.

• The shared document agent informs each user’s viewport about changes and the user’s viewports perform
the appropriate updates to their pointers. That is the viewports own their insertion points and window
offsets.

• The viewports describe their offsets and insertion points in terms of abstract pointer objects. Each
viewport must ‘ask’ the shared document when it wants to convert one of these pointers into an absolute
text position (i.e., offset is at line 33). These pointer objects are owned and updated by the central
document agent, but it does not know what these pointers represent.

The first option is reasonable for simple systems, but leads to an amorphous, and hence hard to analyse, design.
Either of the second or third options serve to modularise the specification. The third is probably the best at an
abstract design level as the viewports do not need to know about the different types of document changes which
can occur. Indeed, this third option leads to an elegant specification of the desired properties, which would
not be possible without both the concepts of dynamic pointers and status/event description. Furthermore, it is
readily transformed into an implementable design.

Are problems a problem

This section has been dealing with the complex issue of mixed control of objects in interfaces (both single and
multi-user). The use of status/event descriptions have not given us a pat solution to these problems. Indeed,
it would be worrying of they did as this is a fundamentally difficult area and there is probably no single right
answer. Instead, the appropriate use of status and event description has allowed us to focus on the key issues
and has exposed the nature of the problem. Contrast this again with a purely event based description, as would
arise if one implemented using a standard toolkit, or event an event based specification notation. In this case,
the behaviour would depend the order in which various events arrived. Even if the designer never considered
the problem of mixed control a solution would emerge. However, this solution would have never been designed
– it may be good, or it may be awful. With a status/event description the designer must face these issues.

6 Refinement and implementation

This chapter is concerned principally with the effective description and specification of interactive systems.
However, any design must eventually be implemented and so we briefly describe some of the issues relating to
the refinement of a status/event based description into a running system.
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time action a x y z
0 3 6 9 3
1 change to a 7 6 9 3
2 update x 7 14 9 3
3 update z 7 14 9 -5 * invariant broken
4 update y 7 14 21 -5
5 update z 7 14 21 7

Table 2: Update order x-z-y-z

Throughout, we have stressed how important it is to describe event and status behaviour appropriately.
However, it can be argued that on a digital computer everything is ultimately event driven. This poses no
problem for state transitions as any input status upon which the transition depends can be sampled when the
event occurs. Status–status mappings are obviously more problematical. In practice, status–status mappings
are mediated by events, either demand driven or data driven. In fact, the opposite is also the case and agents
often use status to mediate events: e.g., the setting of shared variables, use of file system or databases for
interprocess communication, but we will focus here on the status–status problems.

The maintenance of status–status mappings has both behavioural and coding implications.

Behavioural issues

Mediation of status–status mappings by events can lead to, at best, delays and, at worst, inconsistency. The
former, is clear, but perhaps the latter requires an example. Imagine we have a system with four status values
a, x, y and z. The first, a, is obtained from outside the system and the remainder are connected by status–status
mappings to a. The mappings the system seeks to maintain are:

x = 2 × a

y = 3 × a

z = y − x

Note that one can therefore infer that if a is always positive then z will also always be positive (in fact equal to
a).

Imagine that the system starts off in the consistent state:

a = 3

x = 6

y = 9

z = 3

The external status, a, then is updated to become 7. The system has to repair the mappings in some way.
Depending on the way the system works this might happen in a variety of ways. If the updates happen in the
order x-y-z or y-x-z, the different variables are temporarily inconsistent with one another, but at any moment
each is consistent with one or other state of a. However, if the system were to update the system in the order
x-z-y-z, then the intermediate value of z would be -5 (see Table 2) – a negative value.

Unfortunately, the above update order could easily arise in certain types of constraint maintenance systems.
The update to a causes the first two constraints to become invalidated. The system chooses the former to deal
with, resulting in the update to x. This then invalidates the third constraint. If the system is working in a depth
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first fashion this means that the third constraint will be repaired next updating z. Only then would the second
constraint be addressed updating y which would again invalidate the last constraint and so finally z would be
updated a second time.

Obviously, a more complex system might be able to detect such sequences, but even then there is the
likelihood that the user will be presented with inconsistent data from several sources. If the user interface updates
were delayed until a consistent state were reached then the latency could become excessive. Furthermore, in a
distributed environment synchronised update is impossible.

These problems with status–status mappings should be addressed explicitly at some well defined place in
the design process. Again, the use of purely event based notations from the outset would hide, but not solve,
these problems.

We have explored these mediation and refinement issues in greater depth elsewhere [17], but more work is
certainly required in this area.

Coding considerations

One approach to implementation is to ‘refine’ the status–status mappings of the interstitial behaviour into
equivalent data or demand-driven event based behaviour. The resulting event-based description can then be
implemented using standard programming techniques and interface toolkits. The word ‘refine’ is used guardedly
as, for the reasons addressed above, the resulting event based description will not have identical behaviour to
the original status/event description. Some weakening of temporal and semantic properties is inevitable.

Alternatively, some user-interface toolkits are based on some form of constraint system, for example,
Garnet [28] and Rendezvous [23]. This will maintain status–status mappings on behalf of the developer,
although one should be aware that they do not guarantee immunity from the problems of mediated mappings
as was demonstrated above.

Active variables as used in Suite [9, 10] are also a way of supporting status–status mappings by automatically
generating appropriate change events. Furthermore, Suite supports shared variables over distributed platforms.
Of course, it does not absolve the designer from considering the issues of mixed control of shared variables –
Suite implements particular policies for dealing with these issues and the designer must decide whether these
are appropriate and also select various parameters to tune the policies to a particular system.

In a similar vein, the authors have noted that event based implementations of status–status mappings depend
on broadcasting change events to other interested agents (so that they can repair the mappings). They have
therefore been experimenting with an implementation paradigm which directly supports this type of event
(triggers) allowing interested agents to register call-backs for triggers generated by other agents. This is in
addition to more standard message type events. Like Suite this relieves the groupware developer of low-level
network and distributed system coding.

7 Summary

The status/event description is necessary for the natural and effective description of user interfaces. Different
interface specification techniques can be classified depending on how they deal with status and events, but none
deal with both status and event uniformly for input and output. We have shown that it is possible to define a
specification technique which embodies both status and events and have looked at examples of the use of such
an approach. We are not committed to the particular concrete syntax used during the chapter and would be
happy to see other styles of notation extended in a similar fashion. The two crucial features which would be
in any such notation are definitions of both event induced state transitions and interstitial behaviour. Indeed,
it is the interstitial behaviour, the fluid change between actions, which is largely responsible for the sense of
responsiveness in the interface [13]. The use of status/event descriptions exposes several issues which need to
be addressed in many interfaces, especially in the design of groupware.
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[29] F. Paternó and G. Faconti On the LOTOS use to describe graphical interaction. In HCI’92: People and
Computers VII, pages 155–53. Cambridge University Press, 1992.
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Words

We have adopted a rather archaic use of the term interstice, but it is a definition which captures the essence of
what we are after:

Interstice . . . 2. An intervening space of time; an interval between actions. (Shorter Oxford
English Dictionary, Third Edition)
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Arguably, the word has connotations which suggest small, often vanishingly small gaps which is in contrast
to our assertion that much of the activity in a system happens during the interstices. However, this discordant
note perhaps serves to emphasise our point: many interface descriptions do concentrate solely on actions and
overlook the activity during the interstice. We seek to promote the often overlooked interstitial behaviour and
put it on equal footing with the behaviour at actions. The first step in such a process is of course to give this
behaviour a name.
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